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Abstract 

Metal-organic frameworks (MOFs) are an important class of porous materials, owing 

to their potential applications in a variety of areas, including gas storage, molecular separations, 

catalysis, sensors and so on. Most importantly, their large surface areas, tunable pore properties 

and potential for industrial scale production have made MOFs a promising material for clean 

energy applications, such as CO2 storage.  The chemical and mechanical stabilities of MOFs 

play a crucial role in their CO2 storage performance, which require extreme loading pressures 

that are far beyond ambient pressure at times. Application of high external pressure (e.g., in 

gigapascal range) on MOFs can significantly alter the framework structure, pore opening and 

consequently the adsorption properties. This Ph.D. work focuses on the investigation of high-

pressure effects on the structure and CO2 adsorptive performance of MOFs. In situ vibrational 

spectroscopy was used as a primary characterization method, which allows the understanding 

of local structures, chemical bonding, and thus the nature of guest-host interactions between 

the adsorbed molecules and the framework.  

Four types of MOFs with different topologies, structures and porosities have been 

studied under high pressures. First, we showed that ZIF-8 (ZIF = zeolitic imidazolate 

frameworks), a MOF with small pore size, exhibited an unusual chemical stability under 

extreme compression. Structural modifications were found to be reversible in a low-pressure 

region, but irreversible in a high-pressure region. The IR profile of CO2 loaded ZIF-8 on 

compression provided direct evidence of the strong interactions between CO2 and ZIF-8, 

indicating enhanced CO2 storage in the framework. The flexibility of the organic linker played 

an important role in the CO2 adsorption of ZIF-8. MIL-68(In) (MIL = Matériaux de 

l'Institut Lavoisier) features two types of channels with distinct pore sizes and was the next 
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MOF studied. The pressure-induced structural modifications in MIL-68(In) were found to be 

reversible for the as-made framework but irreversible for the activated framework. When 

loaded with CO2, the framework exhibited interesting differential binding affinities with CO2 

at different pressures via the hexagonal and triangular pores. The pressure enhanced CO2 

storage behavior and the guest-host interaction mechanism between CO2 and MIL-68(In) were 

explored with the aid of Monte Carlo simulations. Following this, the performance of α-

magnesium formate [α-Mg3(HCOO)6], a representative lightweight Mg-based MOF for CO2 

adsorption under high pressure, was investigated. Highly ordered CO2 molecules were found 

to be aligned within the pores of α-Mg3(HCOO)6 due to the strong pressure-induced 

interactions with the formate ligand. Furthermore, a highly robust calcium-based MOF named 

CaSDB (SDB = 4, 4′-sulfonyldibenzoate) demonstrated high affinity towards CO2 at high 

pressures. Additional adsorption sites were found at elevated pressures, including an 

interaction site on the metal center.  A CO2 adsorption-driven phase transition was also 

observed for the framework upon compression. This work demonstrates great potential for 

MOF-based greenhouse gas storage applications.  

 

Keywords 

Metal-organic frameworks, high pressure, diamond anvil cell, vibrational spectroscopy, infra-

red spectroscopy, Raman spectroscopy, framework stability, reversibility, CO2 storage, CO2 

adsorption site, guest-host interaction, pressure-induced phase transition, amorphization. 
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Chapter 1  

1 Introduction  

1.1 Metal-organic frameworks  

1.1.1 Structures of metal-organic frameworks 

Metal-organic frameworks (MOFs) are an emerging class of crystalline materials 

constructed by bridging metal–containing units with organic linkers to create open rigid 

frameworks with permanent porosity. One of the prototype and earliest-studied MOF 

structure is MOF-5, a cubic framework built from octahedral [Zn4O(CO2)6] clusters which 

consist of oxygen-centered Zn4 tetrahedra linked by 1,4-benzenedicarboxylate (BDC) 

ligands, as illustrated in Figure 1-1 (a).1 Based on the cubic skeleton of MOF-5, a large 

series of isoreticular MOFs (IRMOFs) that have the same framework topology but with 

different pore size and functionality can be produced by tuning the length and 

functionalities of organic linkers, as shown in Figure 1-1 (b).2 Such IRMOFs have been 

found in other MOF families, such as Zr6O4(OH)4(BDC)6 (UiO-66),3,4 Al(OH)(BDC) 

(MIL-53),5,6 and Cu2(BPTC) (BPTC=3,3',4,4'-benzophenonetetracarboxylate).7 Thus a 

large variety of MOFs with rich structural and topological diversity can be made owing to 

the extraordinary degree of variability for both the organic and inorganic components. Up 

to date, more than 20,000 MOF structures have been reported and studied within the past 

decade.8 Due to their permanent porosity, high thermal stability, large surface area and 

finely tunable chemical functionality, MOFs have wide applications in gas storage,9-11 gas 

separation,12 catalysis,13 drug delivery,14 chemical sensors15 and so on.  
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Figure 1-1. (a) The building units and structure of MOF-5; (b) Isoreticular MOFs of MOF-

5. (ref. 1, 2)   

 

1.1.2 CO2 storage in metal-organic frameworks 

One of the most promising applications of MOFs is gas storage, especially CO2 

storage. As a green-house gas, the sharply rising level of CO2 in atmosphere resulting from 

combustion of coal, oil, and natural gas is one of the greatest environmental concerns 

stoday. Thus it is imperative to develop effective carbon capture and storage (CCS) 

technologies to address this issue. Current technologies involving aqueous amine 

absorbents to capture CO2 have been extensively studied and are considered the state-of-

the-art.16 But it carries a large energy penalty that originates primarily from the need to 

heat the large quantities of the amine solutions, as well as the energy required to break the 

C–N bond formed in the interaction between CO2 and the amine functionality.17 Hence, 

solid porous adsorbents which have much lower heat capacities are considered as an 

alternative strategy for efficient CO2 capture and storage, such as zeolites,18-22 activated 
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carbons,23 covalent-organic frameworks,24-27 amine-grafted silica28,29 and MOFs. Among 

these porous materials, MOFs are most promising for the applications in CO2 storage, 

owing to their ultra-high porosity, large pore volume and surface area, and most 

importantly, a flexibility with which chemical functionalization and molecular-level fine-

tuning can be achieved for optimized uptake capacities. 

The adsorptive capacity is a critical parameter to evaluate the performance of MOFs 

for CO2 storage. CO2 capacity in MOFs can be measured by the gravimetric CO2 uptake, 

which represents the quantity of CO2 adsorbed within a unit mass of the material; or the 

volumetric capacity refers to how densely the CO2 can be stored within the material. The 

high internal surface areas of MOFs make large CO2 adsorption capacities in the 

framework possible because of the efficient packing and close approach of the guest 

molecules on the pore surface. For example, MOF-177 [Zn4O(1,3,5-benzenetribenzoate)2)] 

combines an exceptional level of surface area (4,500 m2/g) with extra-large pores (11×17 

Å) that are desirable for CO2 storage.30 The volumetric CO2 adsorption capacity for MOF-

177 at 35 bar reaches a storage density of 320 cm3(STP)/cm3 (STP= standard temperature 

and pressure), which is 9 times higher than the quantity stored at this pressure in a container 

without the adsorbent and 2 times higher than other porous materials such as zeolite 13X 

and activated carbon, as shown in Figure 1-2.31 The high-pressure (10-50 bar) adsorption 

capacities are mainly dependent on the surface area of MOFs, whereas the low-pressure 

(<1.2 bar) adsorption capacities for MOFs are highly influenced by the chemical features 

of the pore surface, especially those bearing highly functionalized surfaces.10 Therefore, 

functionalization of the frameworks to improve the CO2 binding affinity is crucial for 

optimization of the adsorptive properties of MOFs at low pressures.   
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Figure 1-2. The crystal structure of MOF-177 and comparison of the gravimetric and 

volumetric CO2 capacity for several MOFs and other porous materials. (ref. 31) 

 

Up to date, various types of functionalities in MOFs have been explored to enhance 

the CO2 adsorption selectivity and capacity, including amines, strongly polarizing organic 

functionalities, and exposed metal cation sites. MOFs functionalized with amines have 

been intensively studied for their CO2 adsorption properties.32-35 The dispersion and 

electrostatic forces resulting from the interaction of the quadrupole moment of CO2 with 

localized dipoles generated by nitrogen incorporation are considered responsible for the 

enhanced CO2 adsorption. In addition, acid-base type interactions between the lone-pair of 

nitrogen and CO2 have been observed as well. The commercial availability of aromatic 

amine containing linkers, such as 2-aminoterephthalic acid (NH2-BDC), and the expected 

affinity of amino groups toward CO2 have generated significant interest in aromatic amine 

functionalized frameworks. For example, MOF-5 [Zn4O(BDC)3] adsorbs approximately 

4.6 wt % CO2 at 298 K and 1.1 bar; while the amine-functionalized variant IRMOF-3 
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[Zn4O(NH2-BDC)3] adsorbs 5.0 wt % CO2, despite a decrease in the BET surface area from 

2833 to 2160 m2/g.31 Moreover, amine functionalization has been shown to enhance CO2 

capacity via incorporation of alkylamines into MOF pores.36,37 For instance, alkylamine 

incorporation onto the metal sites of Cu-BTTri (H3[(Cu4Cl)3(BTTri)8; H3BTTri = 1,3,5-

tri(1H-1,2,3-triazol-4-yl)benzene) was found to be an effective method to enhance the CO2 

binding through post-synthetic modifications of MOFs. At 0.15 bar, the gravimetric 

capacity was increased to 9.5 wt % for the functionalized Cu-BTTri framework, which is 

approximately 3.5 times higher than that of the original framework, as shown in Figure 1-

3.37        

 

Figure 1-3. (a) Functionalization of Cu-BTTri through binding N,N' 

dimethylethylenediamine (mmen) to the metal coordination sites; (b) the CO2 (square) and 

N2 (circle) adsorption isotherms for  mmen-Cu-BTTri (green) and Cu-BTTri (blue) at 298 

K. (ref. 37) 
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In addition to the amine functionalized MOFs, organic linkers with other functional 

groups have also been investigated for their effects on the CO2 adsorption performance.38-

47 These functional groups include hydroxyl, nitro, cyano, thio, and halide groups, and the 

degree of how much CO2 adsorption is enhanced mainly depends on the extent of ligand 

functionalization and the polarizing strength of the functional group. In general, more 

strongly polarizing groups will influence CO2 adsorption more favorably. 

Another important approach that has been developed to improve the affinity and 

selectivity of MOFs toward CO2 is the generation of MOF structures with exposed metal 

cation sites on the pore surface.48-53 The open metal sites can be obtained by desolvation of 

the MOFs, where one of the solvent molecules in the metal coordination sphere is removed 

upon heating in vacuum conditions. For the application of CO2 capture and storage, the 

open metal cation sites serve as charge-dense binding sites for CO2 which is adsorbed 

strongly at these sites due to its large quadrupole moment and polarizability. The earliest 

study of MOFs possessing exposed metal cation sites was on HKUST-1 [Cu3(BTC)2; BTC: 

benzene-1,3,5-tricarboxylate], in which the solvent molecules on the axial sites of the 

paddlewheel units can be removed to generate open Cu2+ sites that interact strongly with 

CO2.
48  More recently, a series of MOFs M2(dobdc) (M = Mg, Mn, Co, Ni, and Zn; dobdc 

= 2,5-dioxido-1,4-benzenedicarboxylate) also known as MOF-74 or CPO-27 have drawn 

much attention and became one of the most well-studied MOFs with open metal sites.54   

Each of these MOFs is composed of MII ions generating linear, infinite building units 

bound by dobdc ligands resulting in a hexagonal, 1D pore structure. The pores of the as-

made M2(dobdc) MOFs contain solvent molecules that complete the coordination sphere 

of the metal ions and can be removed upon evacuation to generate coordinately unsaturated 
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metal sites. Sorbent materials such as CO2 are thus provided with a honeycomb structure 

composed of 1D channels as depicted in Figure 1-4 (a). The high density of binding sites 

in the hexagonal pores makes remarkably high CO2 adsorption capacities in the M2(dobdc) 

MOFs, ranging from 19.8 to 26.0 wt % at 1 bar & 296 K, as shown in Figure 1-4 (b). So 

far, the gravimetric and volumetric CO2 adsorption capacities in Mg2(dobdc) are the highest 

among all the MOFs in low-pressure range, despite its relatively low surface area (1495 

m2/g). Thus functionalization of the pores with a large number of high-affinity binding 

sites is an effective way to substantially enhance the CO2 adsorption capacity in a MOF. 

 

 

Figure 1-4. (a) View of 1D channel of the structure of MOF M2(dobdc) adsorbed with 

CO2; (b) CO2 sorption isotherm (296 K, 0 to 1 atm) of the MOF M2(dobdc) series. (ref. 54) 
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1.2 High-pressure science and technology   

1.2.1 High-pressure phenomena  

It is well known that temperature, pressure and volume are three basic macroscopic 

parameters to describe a thermodynamic system. Among these parameters, pressure spans 

over 60 orders of magnitude in the universe, from 10-32 atmosphere in intergalactic space 

to 1032 atmosphere in the center of neutron star.55 Under such a broad range of pressure, 

materials could exhibit various structures as well as novel properties. When applying 

pressure to materials, the general effect is to reduce the volume of the materials, as pressure 

can efficiently shorten the inter-molecular and intra-molecular distances, which will 

increase the free energy of the system.56 The relation between pressure (P) and total energy 

(E) can be described by eq. 1.1,                                                                                                          

  
V

E
P




                                      (1.1) 

Consequently, and alternation of the volume will change the total energy of the system. 

The response of the system to retrieve a new free energy minimum will result in a number 

of possible processes, such as phase transformation, ionization, polymerization, 

amorphization, dissociation, metallization and so on. Hence, the application of high 

pressure on matters provides an effective method to delicately tune their electronic, 

magnetic, optical and mechanical properties.56 Some examples of interesting phenomena 

and novel materials with exotic structures and properties generated under high pressure are 

highlighted in Figure 1-5.57   
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Figure 1-5. Examples of various high-pressure phenomena. (ref. 57) 

 

1.2.2 Diamond anvil cell  

In order to achieve static high pressure in gigapascal range (1 GPa = 109 Pa = 104 

bar) in lab, a special device called diamond anvil cell (DAC) which can generate pressure 

up to ~360 GPa has been used.58,59 Diamonds are known as the hardest material in nature 

and thus suitable to be used as anvils to generate high pressure. Moreover, diamonds are 

transparent to a wide spectral range of electromagnetic radiation. As a result, various 

probes, such as vibrational spectroscopy, X-ray diffraction etc., could be utilized for in situ 

structural characterizations of materials in the DAC under high pressures.60 The principle 
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and operation of the DAC is quite simple as shown in Figure 1-6. A stainless steel gasket, 

which is drilled with a hole at the center and used to contain the sample, is compressed 

between a pair of identical diamond anvils. The culet (the tip of diamond) size usually 

varies from 100 to 700 µm, depending on the maximum pressure desired. Due to the small 

area of the diamond culet, high pressure can be achieved by applying a moderate force on 

the sample.  

 

 

Figure 1-6. Opposed diamond anvil configuration, with a metal gasket for sample 

confinement. 

 

The pressure inside the sample chamber can be monitored using a reference 

material, such as ruby (Al2O3 doped with Cr3+) whose behavior under pressure is known. 

Ruby fluorescence is one of the well-established methods to measure pressure reliably and 

accurately.61-63 When excited by laser, ruby emits luminescent peaks R1 and R2, where the 

position of R1 peak is very sensitive to pressure and an equation was established to describe 

the relationship between pressure and the wavelength of R1 line.63 
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where P is pressure in GPa and Δ λ is the difference between the wavelength of the ruby 

R1 line at pressure P and that at ambient pressure. The parameter B in the equation equals 

to 7.665 for quasi-hydrostatic conditions, and equals to 5 for non-hydrostatic conditions.63 

An example of using ruby fluorescence to determine pressure is shown in Figure 1-7. The 

resolution of the pressure can be achieved to ± 0.05 GPa by using this method.  

 

 

Figure 1-7. Ruby R1 fluorescence spectra at 0 GPa (in black) and 4.9 GPa (in red) under 

room temperature. 
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1.2.3 In situ high-pressure characterizations 

Vibrational spectroscopy which allows the understanding of pressure effects on 

chemical bonding and especially local structures, is used as the primary characterization 

method in this thesis. It is known that molecules have various types of interactions with 

electromagnetic field, including absorption, emission, scattering and so on, which can lead 

to different forms of excitations. The energy transferred from the electromagnetic field to 

the molecule at the vibrational levels (1-1,000 μm) can be recorded by vibrational 

spectroscopy, providing information on molecular structures, chemical bonding, changes 

in the physical and chemical configurations (e.g. crystallinity, confirmation etc.). The most 

common techniques for vibrational spectroscopy are infra-red (IR) and Raman 

spectroscopy which provide similar information about molecule vibrations, however, with 

different selection rules. In general, IR absorption can be detected if the dipole moment in 

a molecule is changed during a normal vibration. Whereas Raman process results from the 

change of polarizability (the ability for a molecule to be polarized) due to the vibration.64 

Therefore, for non-silent molecular vibrations, IR and Raman spectroscopy are 

complementary to each other by providing a whole picture of molecular vibrations.  

 In high-pressure experiments, special consideration must be taken for interfacing 

the technique with DAC due to the small sample size and the presence of the diamond 

window. Thus, the IR and Raman system used in the local lab are both highly customized 

and incorporated with microscopes to allow optical observations because of the 

transparency of diamond windows.  

A customized IR micro-spectroscopy system was used for all room-temperature IR 

absorption measurements. Figure 1-8 shows the schematic diagram of the system. A 
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commercial Fourier transform infrared (FTIR) spectrometer from Bruker Optics Inc. 

(Model Vertex 80v) equipped with Globar mid-IR light source constituted the main 

component of the micro-IR system, which was operated under a vacuum of < 5 mbar, such 

that the absorption by H2O and CO2 was efficiently removed. A collimated IR beam was 

directed into a relay box through a KBr window on the spectrometer. The beam was then 

focused onto the sample in the DAC by an iris optics and 15× reflective objective lens with 

a numerical aperture of 0.4. The size of the IR beam was set to be identical to the entire 

sample size (e.g. ~ 130 μm) by a series of iris apertures. The transmitted IR beam was 

collected using another identical reflective objective as the condenser, and was directed to 

a wide-band mercury cadmium telluride (MCT) detector equipped with a ZnSe window 

that allows measurements in the spectral range of 600 to 12000 cm−1. The customized 

spectroscopic system also allows IR measurements in the reflection mode using reflective 

optics via the optical path shown in Figure 1-8.65 
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Figure 1-8. Schematic diagram of the IR micro-spectroscopy system, with major optical 

components labeled. (ref. 65) 

 

To collect Raman spectra, a customized Raman micro-spectroscopy system was 

used. The schematic diagram of this Raman system is depicted in Figure 1-9. A single 

longitudinal mode, diode pumped solid state (DPSS) green laser with wavelength 532.10 

nm was used as the excitation source. The laser was focused to < 5 μm on the sample by a 

20× objective. The Raman signal was detected with backscattering geometry by the same 

objective lens. The Rayleigh scattering was removed by a pair of notch filters. The 

scattered light was then dispersed using an imaging spectrograph equipped with a 1200 

lines/mm grating achieving a 0.1 cm−1 resolution. The Raman signal was recorded using 



www.manaraa.com

15 

 

an ultrasensitive, liquid nitrogen cooled, back-illuminated, charge-coupled device (CCD) 

detector. The system was calibrated by neon lines with an uncertainty of ± 1 cm−1.66  

 

Figure 1-9. Schematic of the Raman system. BPF: band path filter; IRIS: IRIS aperture; 

M1-7: broadband dielectric reflecting mirrors; FW1A: Six station filter wheel; BS: beam 

splitter; NF: notch filter; DAC: diamond anvil cell; Triple gratings: 300 lines/mm, 1200 

lines/mm, and 1800 lines/mm. (ref. 66) 

 

In addition to vibrational spectroscopy, high-pressure X-ray diffraction (XRD) is 

another powerful technique for the characterization of materials on compression, providing 

information on structural evolution of the crystal lattice. In high-pressure studies, due to 

the bulk anvils of DAC and small sample sizes, X-ray diffraction measurements can only 

be performed with intense high energy X-ray beam and small beam size (e.g., tens of 
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microns), which can only be achieved by synchrotron radiation source due to its wide 

energy range, high brightness and finely tunable beam size.67 The synchrotron facilities at 

the National Synchrotron Light Source (NSLS) in Brookhaven National Laboratory 

(BNL), and Advanced Photon Source (APS) in Argonne National Laboratory (ANL) 

provide highly collimated X-ray source with intense high energy, optimized for in situ high 

pressure XRD measurements.  

 

1.2.4 IR and Raman spectra of CO2 at high pressures 

CO2 is the centerpiece of this work and thus it is imperative to have a 

comprehensive understanding of the CO2 basics, especially its pressure behavior and the 

vibrational spectra at high pressures. Figure 1-10 (a) illustrates the CO2 phase diagram in 

the high pressure region.68 Under room temperature, CO2 transforms to liquid state at 

pressures above 5.1 atm. At pressures higher than 0.6 GPa, it becomes solid known as dry 

ice. In this study, CO2 was trapped with the MOF sample in the DAC upon initial loading 

at ~ 0.3–0.5 GPa and then compressed to higher pressures. Thus CO2 experienced a phase 

transition from liquid to solid phase at 0.6 GPa upon compression. During all the 

measurements in this work, CO2 was either in liquid phase at lower pressures or in solid 

phase I at higher pressures.  
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Figure 1-10. (a) CO2 phase diagram (ref. 68); (b) IR spectrum of liquid CO2 at 0.4 GPa; 

Raman spectrum of CO2 (c) at 0.4 GPa and (d) at 1.0 GPa in the lattice region. (ref. 70) 

 

The vibrational spectrum of liquid CO2 is the same with that of gaseous CO2, which 

is a linear and centrosymmetric molecule. It has three normal vibrational modes, the 

symmetric stretching mode ν1, the bending mode ν2, and the asymmetric mode ν3, among 

which the ν2 and ν3 modes are infrared active, as shown in Figure 1-10 (b). IR absorption 

associated with the normal vibrations was too strong and thus their band positions were 

unable to be determined due to saturation. However, two high-frequency bands with 

adequate absorption intensity, which are well understood as the CO2 combination modes 

of ν3+ 2ν2 and ν3+ ν1 can be observed and used to monitor the pressure behavior of CO2.
69 

The other normal mode ν1 is Raman active, however, anharmonic coupling between nearly 
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degenerate modes ν1 and overtone 2ν2 gives rise to modes ν+ (≈ ν1) and ν- (≈ 2ν2) in the 

Raman spectrum (Fermi resonance), as depicted in Figure 1-10 (c).70  

Upon solidification, CO2 crystalizes in a cubic space group Pa3 (phase I), in which 

the molecules are oriented along the body diagonal of the cubic cell.70 Each primitive unit 

cell contains four CO2 molecules. In addition to the three internal modes in the gas phase, 

solid state CO2 features external modes in the low frequency region due to the translational 

and rotational motions of a whole molecule within the unit cell. Figure 1-10 (d) shows the 

three external modes (lattice modes) of solid CO2 at ~1 GPa under room temperature.  

 

1.3 High-pressure effects on MOFs 

For the application of CO2 storage, MOFs need to be mechanically stable enough 

to allow a dense packing of the adsorbent bed without loss of the framework structure. 

Even slight perturbations to the structural or chemical features of MOFs under a high 

mechanical pressure could have a considerable effect on their performance for CO2 

adsorption. In contrast to the extensive studies of MOFs under ambient conditions, the 

investigations of MOFs under high external pressure in the order of gigapascal are much 

less.  Thus it is of great interest to thoroughly explore the behavior and performance of 

MOFs under high pressure. So far, studies have demonstrated a wide variety of behavior 

of MOFs in response to the application of high external pressure, including unusual elastic 

responses, phase transitions, chemical reactions and high-pressure guest insertion.71 In this 

section of the thesis, selected examples will be given for those specific high-pressure 

effects on MOFs.  
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1.3.1 Unusual elastic responses 

The diversity of the mechanical behavior of materials as a function of topology has 

been well established for inorganic materials, such as zeolites.72-74 However, the 

mechanical properties of MOFs under external stress is an aspect that has not been 

thoroughly explored mostly due to the difficulties in determining them reliably from 

relatively small crystal sizes.  Nonetheless, some systematic efforts at measuring 

mechanical properties of MOFs, including bulk modulus (through high-pressure 

crystallography), directional Young’s moduli and hardnesses (through nanoindentation of 

micro-crystals) have been made in recent years.75-80  It was found that some MOFs have 

demonstrated unusual mechanical responses to external pressure by deformations of large 

amplitude or counterintuitive direction. The most representative example of 

counterintuitive mechanical behavior of MOFs is negative linear compressibility (NLC), 

in which the material expands along one or more directions while undergoing a reduction 

in volume under increasing pressure. The NLC has been found in MOFs with wine rack-

type framework including silver(I) 2-methylimidazolate81 and [NH4][Zn(HCOO)3],
82 as 

well as in MOFs exhibiting a similar hinging mechanism, such as MIL-53.83,84 For 

example, MIL-53(Al) showed an expansion in the b direction while contracting in the a 

and c directions, demonstrating NLC in one direction upon increasing pressure from 0 to 3 

GPa, as illustrated in Figure 1-11. To understand the mechanism that leads to the NLC 

phenomenon in MIL-53(Al), the inorganic Al(OH) chains can be visualized to act as hinges 

in the flexible framework. Dicarboxylate linkers in the orthogonal plane connect these 

hinges to each other, serving as rigid struts. The rigidity of the struts in this wine-rack 

geometry enforces a connection between variations in the a and b lattice parameters: when 
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a decreases, b increases, giving rise to the NLC phenomenon. The unique property of NLC 

in MOFs can be utilized for potential applications in pressure sensors.   

 

 

Figure 1-11. Evolution of the cell volume (top) and lattice parameters (bottom) of MIL-

53(Al) with increasing pressure. (ref. 83) 

 

Moreover, another class of abnormal mechanical property of MOFs is the extreme 

anisotropy of elastic moduli, with some crystal directions exhibiting deformations of much 

larger amplitude than others. This phenomenon is highly dependent on the MOF topology. 

In general, deformations resulting from compression of the framework’s linker usually 

exhibit high elastic moduli, whereas the hinges of the framework involving weaker 

interactions have much lower stiffness. The contrast between the strong intramolecular 
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interactions (covalent & coordination bonds) and the weak intermolecular interactions (van 

der Waals forces, hydrogen bonds, etc.) in MOFs can lead to up to two orders of magnitude 

in difference between the highest and lowest moduli.85 The extreme elastic anisotropy is a 

key feature of highly flexible MOFs, also known as the “breathing” MOFs.86 

 

1.3.2 Phase transitions  

Besides the unusual elastic responses under compression, some MOFs were found 

to exhibit pressure-induced phase transformations. The most commonly observed phase 

transitions of MOFs is the pressure-induced amorphization, which has been well-studied 

in the family of zeolitic imidazolate frameworks (ZIFs). For example, ZIF-8 shows an 

irreversible amorphization under non-hydrostatic compression at 0.3 GPa87 as well as 

under mild ball-milling.88 Under hydrostatic compression on ZIF-4, which has a lower 

porosity compared with ZIF-8, the amorphization was found to be reversible at a higher 

pressure (0.35-0.98 GPa) in the evacuated state. In addition, the presence of solvent 

molecules in the pores of as-made ZIF-4 shifts amorphization to higher pressure and even 

leads to the generation of an intermediate crystalline phase.89 Therefore, the conditions for 

the amorphization of different ZIFs vary, depending on pressurization conditions, 

framework topology and porosity, presence of guest inside the pores, and so on. By 

measuring the elastic constants of ZIFs up to the amorphization pressure, the crystal-to-

amorphous transition was found to be triggered by a mechanical instability under 

compression, due to shear mode softening of the materials.86,90 
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Furthermore, MOFs also demonstrated crystalline-to-crystalline phase transitions 

induced by compression. Such transitions lead to the formation of a denser phase under 

high pressure, usually accompanied by a distortion of the framework from the ambient 

phase. A distinctive example is the pressure-induced phase transition of Zn(CN)2, which 

transforms from a dense interpenetrated framework at ambient pressure to  a series of new 

porous frameworks at high pressures (0.9-1.8 GPa). These phase transitions are driven by 

an increase in overall atomic packing density allowed by including fluid molecules in the 

pores of the framework and involves a buckling of the Zn−CN−Zn linkage from a linear 

conformation in the ambient phase to a displaced CN− anion and shorter Zn···Zn distance 

in the high-pressure phase, as depicted in Figure 1-12.91 The crystalline-to-crystalline phase 

transformations under high pressure have been found among other MOFs as well, such as 

MIL-53 (Cr),92,93 MIL-47,94 Co2(4,4'-bipyridine)3(NO3)4
95

 and so on.  

 

Figure 1-12. Phase transitions of Zn(CN)2 upon compression in different fluid media. (ref. 

91) 
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1.3.3 Chemical reactions  

Recently, researchers found that chemical reactions of MOFs can be achieved by 

applying high external pressure to the frameworks, leading to bond breaking and formation. 

Pressure-induced bond rearrangement is very uncommon yet highly desirable in materials 

science and only two examples of such phenomenon in MOFs has been reported so far. 

The first example is a reversible pressure-induced bond rearrangement in erbium formate 

MOF [Er(HCOO)4]2 that undergoes a phase transition upon compression at about 0.6 GPa, 

in which the framework transforms from a 6-connecting uninodal vmd net to a new 8-

connecting vmt net.96 The second one is found in the family of zinc phosphonate MOFs, 

also known as zinc alkyl gates (ZAG). Two MOFs from this family, ZAG-4 and ZAG-6 

have shown a pressure-induced reversible proton transfer between an included water 

molecule and the linker’s phosphonate group, resulting negative linear compressibility of 

the framework at high pressure, as shown in Figure 1-13.97,98 The MOFs in ZAG family 

provide new insight into crystal physics and properties, as well as practical applications as 

pressure-switchable proton conduction materials. The rare examples of pressure-induced 

chemical reactions show just how deep the field of pressure effects on MOFs is and 

encourage further studies to explore more novel and unexpected phenomena of MOFs 

under high pressure.  
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Figure 1-13. Pressure-induced proton jump in ZAG-4 and ZAG-6. (ref. 98) 

 

1.3.4 High-pressure guest insertion 

The interactions between the flexibility of MOFs and the adsorption of guests 

within their pores has attracted much attention in the MOF studies because such interplay 

is readily observed during adsorption measurements. In high-pressure range, one of the 

important research directions in this area is the use of high pressure to insert guest fluids 

into the pores of the frameworks, often triggering structural transformations of the host. 

Typically for such experiments, the MOFs sample is loaded with small molecular fluid or 

fluid mixture such as methanol, ethanol, etc., allowing the insertion of the guest into the 

framework. Early studies involved in HKUST-199 and ZIF-8100 and more MOFs have been 

investigated on the high-pressure guest inclusion recently.101-105 It was found that the 

pressure-induced insertion of fluids into the porous framework can lead to contraction, 

expansion, or structural transitions in the host framework as well as enhanced guest-host 
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interactions. In addition, the behavior of the host + guest system under compression can be 

very different from the host itself.  The presence of guests inside the pores increases elastic 

moduli and diminishes compressibility, while improving resistance to delaying the onset 

of pressure-induced amorphization.106,107 For instance, methanol can be forced into the 

pores of MOF Sc2BDC3 as a pressure medium and located in two distinct sites, as 

illustrated in Figure 1-14.105   Site 1 was filled at 0.3 GP and upon increasing pressure, the 

occupancy of the less favorable Site 2 increased as more methanol molecules were forced 

into the channels until a maximum uptake was reached at 1.1 GPa. Single crystal X-ray 

diffraction showed that Sc2BDC3 maintained crystalline during methanol-mediated 

compression up to 3.0 GPa, in strong contrast to the amorphization of the framework at 0.4 

GPa compressed with bulky pressure medium Fluorinert (fluorocarbon-based fluid). It is 

worth noting that the use of high pressures to saturate the pores of MOFs with guest 

molecules has potential applications in clean energy storage, such as pre-combustion CO2 

capture which is performed at high pressures (10-100 bar).   
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Figure 1-14. (a) Unit cell volume of Sc2BDC3 in methanol and Fluorinert as a function of 

pressure; (b) pressure-induced methanol insertion in Sc2BDC3. (ref. 105) 

 

1.4 Outline of the thesis 

The main objectives of this thesis are to examine the chemical & structural 

stabilities of selected MOFs and their performance for CO2 storage under high pressures. 

The thesis is organized in the following way. Chapter 2 discusses the stability of ZIF-8 in 

different pressure ranges probed by in-situ IR spectroscopy. Following Chapter 2, direct 

evidences of the interactions between CO2 and ZIF-8 as well as an enhanced CO2 storage 

in the framework were demonstrated in Chapter 3. The flexibility of the organic linker of 

ZIF-8 was found to play an important role in the CO2 adsorption mechanism. Chapter 4 

compares different pressure behavior among four MIL-68 (In) systems: the as-made MIL-

68 (In), the activated framework, the activated sample loaded with nujol and the CO2-

loaded framework. Furthermore, the CO2 adsorption mechanism and the host-guest 

interactions are studied through in-situ IR spectroscopy as well as Grand Canonical Monte 
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Carlo simulations. Chapter 5 describes the interplay between CO2 and the α-Mg3(HCOO)6 

framework, which undergoes a reversible amorphization upon compression. In Chapter 6, 

the stability and CO2 storage in MOF CaSDB under high-pressure are investigated by in 

situ IR and Raman spectroscopy. The CaSDB framework shows a remarkable affinity 

towards CO2 and an enhanced CO2-metal interaction is found as evidenced by far-IR 

measurements. As guest molecules, CO2 substantially influences the structure of CaSDB 

and triggers a crystal-to-crystal phase transition of the framework at high pressures. 

Chapter 7 is the final chapter, in which a brief summary of the thesis and some suggestions 

for future work are provided. 
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Chapter 2  

2 In Situ High Pressure Study of ZIF-8 by IR 
Spectroscopy* 

2.1 Introduction 

ZIFs, short for zeolitic imidazolate frameworks, are an emerging class of porous 

materials with extended 3D crystalline structures constructed from tetrahedral metal ions 

(Zn, Co, In, etc.) bridged by imidazolate (Im) units. Up to date, a large variety of ZIFs with 

rich structural and topological diversity have been made by virtue of the flexibility with 

which the metals and links can be varied.1,2 In the ZIF family, ZIF-8 [Zn(MeIm)2, MeIm = 

2-methylimidazolate] has been widely studied due to its tunable pore size, chemical 

stability and thermal robustness, which make it a promising candidate for gas storage,3 

molecular separation,4 catalysis5,6 and so on. The topology of ZIF-8 corresponds to the 

zeolite sodalite, which can be described as a space-filling packing of truncated 

octahedrons.2 In particular, it crystallizes in a cubic lattice (space group I-43m) that 

contains cavities with a diameter of 11.6 Å connected via 6-ring apertures with a 3.5 Å 

window and 4-ring apertures (see Fig. 2-1). 

 

 

 

 

* The content of this chapter has been published as: Hu, Y.; Kazemian, H.; Rohani, S.; Huang Y. 

and Song, Y. Chemical Communications, 2011, 47, 12694.  
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Figure 2-1. Crystal structure of ZIF-8 viewed along the c-axis. The pink polyhedrons 

denote the ZnN4 units. The yellow sphere indicates the space in the cage.  

 

In contrast to the extensive studies under ambient conditions and at different 

temperatures,7 ZIF-8 has only been studied under pressure in a very limited range.8-11 It is 

well known that pressure can influence the structures, physical and chemical properties and 

performance of nanoporous materials.12 Therefore, pressure provides a new approach to 

achieve structural modification which includes changes in pore size, opening and 

geometry, channel shape and internal surface area. Subsequently, these pressure-induced 

changes will affect the sorption selectivity, capacity and access to the binding sites of the 

porous materials. Indeed, pressure has been used to tune the sorption properties of ZIF-8. 

For instance, Moggach et al. reported that ZIF-8 undergoes a reversible crystalline-to-

crystalline phase transition at around 1.5 GPa in some pressure transmitting medium 

(PTM).11 The interaction between the PTM and ZIF-8 nanopore was believed to play an 

important role in the phase transition. This study demonstrated that pressure could be used 

to modify the pore size, shape and volume, eventually increasing the accessible surface 

area for gas storage materials. In parallel, Chapman et al. showed that compression of ZIF-
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8 at very low pressures (e.g., 0.34 GPa) resulted in an irreversible structural transition and 

amorphization upon recovery to ambient pressure.9 The amorphization behavior was found 

to be independent of whether a PTM was used or not. These different results not only 

involve guest–host interactions, but may be due to the intrinsic detailed intra-molecular 

chemical responses of ZIF-8 to compression. While X-ray diffraction provides information 

about structural evolution of the crystal lattice, vibrational spectroscopy allows the 

understanding of pressure effects on chemical bonding and especially local structures. Here 

we report the first in situ infrared (IR) absorption spectroscopic study of ZIF-8 under high 

pressures.  

 

2.2 Experimental section 

The ZIF-8 sample was synthesized according to the literature.13 A solution of 

Zn(NO3)2·6H2O (2.933 g, 9.87 mmol) in 200 mL of methanol is rapidly poured into a 

solution of 2-methylimidazole (6.489 g, 79.04 mmol) in 200 mL of methanol under stirring 

with a magnetic bar. The mixture slowly turns turbid and after 1 h the nanocrystals are 

separated from the milky dispersion by centrifugation and washing with fresh methanol. 

The nanocrystals are dried at 40 °C in air. Yield is 50 % based on zinc. The solvent 

molecules can be removed from the as-made sample through thermal activation at 200 °C 

for 6 hours. The crystallinity, morphology and porosity of the activated sample were 

checked by XRD, SEM and BET, respectively. A diamond anvil cell (DAC) equipped with 

type II diamonds with culet sizes of 400 and 600 μm was used to generate high pressures. 

The pure desolvated samples were loaded into the DAC without KBr or any other fluid 

PTM to rule out the possible guest–host interactions. The samples were 150–200 μm in 
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diameter and ~ 30 μm thick. A few Ruby chips were inserted as the pressure calibrant. A 

customized IR micro-spectroscopy system with details described in Chapter 1 was used 

for all IR absorption measurements.14 Multiple runs were carried out for reproducibility 

and all measurements were performed under room temperature. During both compression 

and decompression and in between runs, sufficiently long time was allowed for equilibrium 

to rule out any kinetic effect and no time dependent behavior was observed. 

2.3 Results  

2.3.1 IR spectra of ZIF-8 upon compression to 39 GPa  

Fig. 2-2 (a) shows the selected IR spectra of ZIF-8 on compression to 39.15 GPa 

and then decompression to ambient pressure. As a starting point, our ambient pressure IR 

measurement is in excellent agreement with that reported by Ordonez et al.15 The complete 

assignment of the observed IR bands is difficult due to the complex nature of the ZIF-8 

framework. However, most of the absorption bands are associated with the vibrations of 

the imidazole units and thus can be described based on the origin of the bonds. For example, 

the bands at 3135 and 2929 cm-1 are attributed to the aromatic and the aliphatic C–H stretch 

of the imidazole, respectively. The peak at 1584 cm-1 can be assigned as the C=N stretch 

mode specifically,15 whereas the intense and convoluted bands at 1350–1500 cm-1 are 

associated with the entire ring stretching. The bands in the spectral region from 900 to 1350 

cm-1 are for the in-plane bending of the ring while those below 800 cm-1 are assigned as 

out-of-plane bending. Due to the limitation of our IR apparatus (i.e., for mid-IR 

measurements only), the bonding between the metal and organic ligand, i.e., the Zn–N 

stretch mode which is expected at 421 cm-1 was not observed. 
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Figure 2-2. Selected IR spectra of ZIF-8 on compression to a highest pressure of 39.15 

GPa and as recovered (a), and to another highest pressure of 1.60 GPa and as recovered (b)
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Upon compression to 1.24 GPa, most of the IR absorption bands exhibited 

significant changes. For example, the aromatic C–H stretch mode at 3135 cm-1, the C=N 

stretch mode at 1584 cm-1, and an out-of-plane bending mode at 760 cm-1 were all 

broadened and split. Band splitting typically suggests enhanced intermolecular 

interactions, in this case, the ring-ring interaction of the ZIF-8 framework within the unit 

cell. Other changes include the significant enhancement of one of the ring stretch modes at 

1420 cm-1 and the appearance of a new IR band at 1031 cm-1. Further compression resulted 

in continuous broadening accompanied by mode merging. At the highest pressure of 39.15 

GPa, the IR profile can be characterized by an extremely broadened pattern, indicating the 

transformation to disordered or amorphous structure, in accord with Chapman et al.’s 

observation above 0.3 GPa.9 Then the IR spectra of ZIF-8 were collected upon 

decompression all the way back to ambient pressure. The pressure evolutions were 

observed in the reverse sequence as expected. Upon complete decompression, however, 

the spectrum of the recovered sample only resembles that at around 4 GPa instead of the 

initial ambient-pressure spectrum before compression especially in the ring stretch region 

as as well the C=N and the C–H stretch regions, indicating that the framework has been 

partially modified. Nonetheless, all other major IR bands of the recovered sample are still 

characteristic of the imidazole ring, indicating that the entire ZIF-8 framework has survived 

a compression pressure of 39.15 GPa without a permanent breakdown although the local 

structures might have been modified. 
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2.3.2 IR spectra of ZIF-8 upon compression to 1.6 GPa  

We then focused on a lower and narrower pressure region where the modification 

might be completely reversible. Fig. 2-2 (b) shows the selected IR spectra of ZIF-8 on 

compression to a highest pressure of 1.60 GPa followed by decompression. In this pressure 

region, although pressure-induced band broadening was also observed, there was no 

significant change of the entire IR profile in general, except that an out-of-plane bending 

mode (band 3) exhibited a splitting at 0.1 GPa. The recovered material exhibited a very 

similar profile to, but not exactly the same as the original sample, in strong contrast to that 

compressed to 39.15 GPa. In particular, the C=N stretch mode and both the aromatic and 

the aliphatic C–H stretch modes were clearly recovered. These observations suggest that 

the structural modifications of ZIF-8 were mostly reversible in the lower pressure region 

in which the crystallinity and framework structure are highly preserved, consistent with the 

structure and reversibility of the phase below 1.47 GPa reported by Moggach et al.11 using 

X-ray methods.  

 

2.4 Discussion  

The above two runs established that different highest compression pressures 

resulted in different reversibilities. Thus we monitored the pressure dependence of IR 

modes of ZIF-8 in the respective two compression regions, i.e., 0–1.6 GPa and 2–14 GPa, 

as shown in Fig. 2-3. The pressure coefficients were analyzed by least-square fitting of the 

experimental data and are reported in Table 2-1. In general, the pressure coefficients are 

extremely small in magnitude (i.e., < 5 cm-1/GPa), indicating that the bond strength is not 

very sensitive to compression in a broad pressure region. In the pressure region of > 2 GPa, 
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the IR modes exhibited regular pressure-induced blue shifts, consistent with that the bonds 

become stiffened upon compression. In contrast, some of the IR modes (e.g., bands 4, 5, 6 

and 9) exhibited a significant red shift in the pressure region below 1.6 GPa. The soft 

behavior (i.e., negative pressure coefficients) is typically associated with bond weakening 

processes that may ultimately lead to a phase transition. The largest negative pressure 

dependence of the C=N stretching mode as well as other soft in-plane ring bending modes 

most likely originates from the weakening of the π bonds, resulting from a slight ring 

distortion.  

 

 

Figure 2-3. Pressure dependence of selected IR modes of ZIF-8 on compression in the 

pressure region of 0–1.6 GPa and 2–14 GPa. 
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Table 2-1. Pressure dependence (dν/dP, cm-1/GPa) of IR modes of ZIF-8 on compression 

 

Mode Frequency (cm-1) 0-1.6 GPa 1.6-12.8 GPa 

1 684 0.72 

0.47 

2 693 2.89 

3 758 2.40 2.32 

4 953 -2.57 0.79 

5 995 -1.00 0.95 

6 1146 -3.34 1.98 

7 1180 -0.02 2.48 

8 1310 1.23 2.27 

9 1584 -4.42 1.27 
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Finally, when combined with previous X-ray studies of high-pressure behavior, our 

results provide interesting implications about the stabilities of ZIF-8 and thus its potential 

applications. First of all, all the high-pressure studies so far suggest that the lattice 

stabilities were greatly reduced without a penetrating PTM. However, the chemical 

stability probed by the current IR study seems independent of the crystalline state and 

surprisingly high compared to isolated aromatic systems that typically break down at even 

very moderate pressures.16 This property makes ZIF-8 a promising storage material for 

applications that require extreme loading pressures. Furthermore, the pressure effect on the 

pore size of ZIF-8 is of great interest for its storage capacity. Moggach et al. showed that 

the pore size of ZIF-8 can be enlarged with the incorporation of the PTM molecules by free 

rotation of the imidazole rings, whereas Chapman et al. reported a monotonic decrease in 

unit cell volume upon compression. Our IR results in the pressure region of < 1.6 GPa, 

however, suggest that even without a PTM, the pore size may remain constant with enough 

rigidity despite the ring weakening upon compression. Even in the amorphous phase, the 

small pressure coefficients nonetheless suggest that the nanopores are not sensitive to and 

may survive extreme compressions. This is especially desirable to extend the storage 

applications of ZIF-8 to much broader physical conditions.  

 

2.5 Conclusions  

In summary, we obtained the first in situ IR spectra of ZIF-8 under high pressures 

up to ~ 39 GPa. Upon compression to 1.6 GPa followed by decompression, the pressure 

effects on the ZIF-8 framework were found to be reversible. Further compression to higher 

pressures resulted in irreversible structural transitions to a disordered or amorphous phase. 
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However, the chemical structure of the framework was found to sustain extreme 

compression without breaking down. The compression behavior and especially the 

surprising chemical stability probed by in situ IR spectroscopy provide new insight into 

the storage applications of ZIF-8. 
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Chapter 3  

3 Evidence of Pressure Enhanced CO2 Storage in ZIF-8 
Probed by FTIR Spectroscopy* 

3.1 Introduction 

Zeolitic imidazolate frameworks (ZIFs) are an emerging class of metal-organic 

framework (MOF) materials that could serve as an effective platform for the capture and 

storage of CO2 due to their ordered structures, high thermal stability, very high porosity 

and adjustable chemical functionality.1-4 In the large ZIF family, ZIF-8 [Zn(MeIm)2, MeIm 

= 2-methylimidazolate] is one of the most studied ZIFs featuring a cubic lattice (space 

group I-43m) and sodalite (SOD) topology that contains cavities with a diameter of 11.6 Å 

connected via 6-ring apertures with a 3.4 Å window and 4-ring apertures.3 Adsorption 

studies of various gases (e.g., CO2, CH4 and N2) in ZIF-8 have been documented both 

experimentally and theoretically.5-9  

Among these studies, it is suggested that the framework stability and flexibility play 

an important role in the mechanism and performance of gas adsorptions. Application of 

high external pressure (e.g., in the gigapascal range) on the framework far beyond the 

practical gas adsorption pressure (e.g., up to 100 bar) may significantly alter the framework 

topology and thus the adsorption properties.10-14 For instance, Chapman et al.10 showed 

that compression of ZIF-8 to 0.34 GPa either in non-penetrating fluid or without pressure  

 

* The content of this chapter is based on the publication: Hu, Y.; Liu, Z.; Xu, J.; Huang, Y. and 

Song, Y. Journal of the American Chemical Society 2013, 135, 9287.  
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transmitting medium (PTM) resulted in an irreversible structural transition and 

amorphization. Using in-situ high-pressure single crystal X-ray diffraction, however, 

Moggach et al.11 observed a reversible crystalline-to-crystalline phase transition at around 

1.5 GPa in some penetrating PTM.  Thus the interaction between the PTM and ZIF-8 

framework was believed to play an important role in the phase transition and have a 

significant influence on the framework stability. While X-ray diffraction was extensively 

used in these studies to provide the information about structural evolution of crystal lattice 

with pressure, vibrational spectroscopy allows the understanding of local structures, 

chemical bonding and, thus the nature of host-guest interaction between the adsorbed 

molecules and the framework. Given the facts that kinetic diameter of CO2 (3.3 Å) is 

slightly smaller than the size of the hexagonal channels of ZIF-8 (3.4 Å) and that the ZIF-

8 framework has relatively high stability, it should be possible to insert more CO2 into the 

framework at pressures of gigapascal range to substantially enhance the storage capacity. 

So far no study has addressed the CO2 storage capacity and CO2-ZIF-8 interaction at the 

above mentioned pressure range, despite extensive adsorption studies and simulations at 

lower pressures.  Here, using in-situ FTIR spectroscopy, we investigate the CO2 adsorptive 

performance of ZIF-8 and provide the first evidence of the enhanced CO2-framework 

interactions at high external pressures. 

 

3.2 Experimental section 

The ZIF-8 sample was synthesized according to the literature.15 A diamond anvil 

cell (DAC) equipped with type II diamonds with culet sizes of 600 μm was used to generate 

high pressures. The pure desolvated ZIF-8 powder samples were loaded into the DAC 
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together with solid CO2 in a cryogenic bath of liquid nitrogen at a temperature below the 

melting point of dry ice (i.e., < -78 C) by introducing the pure gaseous CO2. Then the cell 

was carefully sealed with minimal possible pressure (e.g., 0.4 GPa) at low temperature 

before warming up to room temperature. A customized IR micro-spectroscopic system with 

details described in Chapter 1 was used for all mid-IR absorption measurements.16 Far-

Infrared measurements were performed at the U2A beamline at the National Synchrotron 

Light Source (NSLS), Brookhaven National Laboratory (BNL).  

 

3.3 Results  

3.3.1 IR spectrum of ZIF-8 loaded with CO2 at 0.78 GPa 

Figure 3-1b shows the optical image of the loaded sample where transparent areas 

are mainly solid CO2 outside the ZIF-8 framework.  From top to bottom, representative IR 

absorption spectra of pure CO2, ZIF-8 loaded with CO2 and pure ZIF-8 collected at a 

similar pressure (~0.8-1 GPa) are shown in Figure 3-1a. The IR spectrum of pure ZIF-8 is 

consistent with that previously reported in the literature.13  The two strong absorption bands 

at 671 and 2325 cm-1 in the pure CO2 spectrum are attributed to the bending mode (ν2) and 

asymmetric stretching mode (ν3), respectively. In addition, two high-frequency bands were 

observed at around 3600 and 3700 cm -1, which are well understood as the CO2 combination 

modes of ν3 + 2ν2 and ν3 + ν1, respectively, due to the strong Fermi resonance effect.17-20  
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Figure 3-1. (a) IR spectrum of ZIF-8 loaded with CO2 (middle) compared with that of pure 

CO2 (top) and that of pure ZIF-8 (bottom) at similar pressures. The inset shows the zoomed 

spectral region for the combination modes of ZIF-8 loaded with CO2 (top) and pure CO2 

(bottom). (b) Photograph of ZIF-8 loaded with CO2 taken under an optical microscope. The 

arrows indicate the positions of the C=C stretching mode of the imidazole ring.  

 

The IR spectrum of ZIF-8 loaded with CO2 not only indicates the successful CO2 

loading, but also provides strong evidences for guest-host interactions between ZIF-8 

framework and CO2. First, the IR spectrum exhibits a composite characteristic profile that 

comprises the contributions from individual pure CO2 and pure ZIF-8 framework with 

some modifications (discussed later). Due to the extremely intense IR absorptions of ν2 and 

ν3 modes of CO2, their behavior is difficult to monitor directly. A previous work 
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demonstrated that the CO2 overtone/combination bands can be used to follow the insertion 

of CO2 into the pores of zeolites.21 In the present case, the most striking observation is the 

drastically different absorption profile of the overtone/combination bands as shown in 

Figure 3-1 inset.  Each of these two bands splits into a doublet: the ν3 + ν1 band originally 

at 3708 cm-1 displays a doublet at 3700 and 3720 cm-1, while the ν3 + 2ν2 band also splits 

into two peaks.  For each doublet, the low-frequency component resembles the original 

profile of pure CO2, while the high-frequency component is much sharper and intense. The 

strongly contrasting intensity and linewidth for the two components for each doublet 

indicate that there are two different types of CO2 molecules, i.e. the CO2 outside the ZIF-8 

framework and the CO2 included in the pores of the framework. In order to determine the 

exact assignments of the doublet, we must understand the pressure behavior of pure CO2 

first.  

Figure 3-2a shows the evolution of the pure CO2 combination modes as a function 

of pressure from 0.33 to 2.23 GPa. It can be seen clearly that upon compression to 0.61 

GPa, both of the combination modes of CO2 became much sharper, accompanied with an 

increase of intensity. Previous studies revealed that CO2 solidifies at the pressure of 0.6 

GPa under room temperature.18 Consequently, the sudden changes of the CO2 combination 

modes on compression is due to the phase change of CO2 from liquid to solid.  The sharper 

and narrower band shape is due to the fact that the solid CO2 is in a highly crystalline phase 

(phase I, Pa3),18 which provides homogenous chemical surroundings for the CO2 

molecules, in contrast of the fluid CO2. In this case, CO2 was loaded with the sample 

initially at 0.47 GPa and room temperature, under which the CO2 was in liquid state. Thus 

the ZIF-8 framework was immersed in a liquid bath of CO2, which can diffuse into the 
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pores of the framework. Further compression resulted in the solidification of CO2 outside 

the framework, whereas the CO2 trapped inside the framework remained fluid. As a result, 

the low-frequency component with similar profile to the overtones of pure liquid CO2 can 

be interpreted as a substantial portion of CO2 molecules being inserted into the ZIF-8 

framework under the current pressure-temperature conditions. The higher-frequency 

component can be assigned as the solid crystalline CO2 outside the framework.  This 

assignment can be further evidenced by the frequency plots of the ν3 + ν1 modes as a 

function of pressure, compared with those of pure CO2 from experiment and solid CO2 

from calculation,18 as shown in Figure 3-2b. Clearly, the component with higher frequency 

(red square) behaves more like solid CO2 on compression. In addition, in a previous IR 

study of CO2 trapped in solid N2 matrix, a similar splitting behavior for the ν3 + ν1 

combination mode was reported by McCluskey and Zhuravlev.22 These observations 

provide strong evidence that CO2 are trapped and constrained in the SOD cages of ZIF-8 

at high pressures.  
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Figure 3-2. (a) IR spectra of pure CO2 in the spectral region of the combination modes 

collected on compression. (b) Frequency plots of ν3 + ν1 mode of CO2 as a function of 

pressure.  

 

3.3.2 IR spectra of ZIF-8 loaded with CO2 upon compression and 
decompression 

The pressure effects on the CO2 storage in ZIF-8 were further investigated. Figure 

3-3 shows the IR absorption spectra of the combination modes of CO2 loaded with ZIF-8 

upon compression and decompression. When initially loaded at 0.47 GPa, the IR spectrum 

shows a regular profile of pure CO2. When compressed to above 0.78 GPa, a splitting of 

the combination modes was observed as the CO2 outside the framework became solid, 

whereas the CO2 trapped inside the framework remained fluid. Continuously compressing 

to higher pressures (e.g., 2.65 GPa or higher) resulted in the blue shift of all modes (Figures 

3-3a). However, the splitting of the combination modes can be observed in the entire 
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pressure range from 0.78 to 2.65 GPa, indicating that the ZIF-8 framework still remained 

the porosity for CO2 storage at high pressures that are in the order of GPa. Upon releasing 

the pressure, the doublet starts to merge into a singlet at 0.47 GPa (Figure 3-3b), indicating 

that the CO2 outside the framework became liquid. When the pressure is completely 

released, the CO2 molecules inside the framework have escaped from the cages completely, 

leaving only the signals due to the CO2 outside the framework in the spectrum (see the 

bottom spectrum in Figure 3-3b). Furthermore, based on the absorption intensity of the two 

components of the ν3 + ν1 mode, we estimated that up to ~33.5 % of the loaded CO2 was 

inserted in the framework. These results indicate an interesting, pressure-enhanced CO2 

storage behavior in the ZIF-8 framework.  

 

 

Figure 3-3. IR spectra of ZIF-8 loaded with CO2 in the spectral region of the combination 

modes collected on compression (a) and decompression (b) at room temperature. 
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3.4 Discussion  

The nature of the interaction between CO2 and ZIF-8 framework as well as the 

migration mechanism is of great interest, which may be understood from previous studies. 

For instance, Lee et al.23 observed a similar reversible insertion behavior of CO2 into a 

small-pore zeolite natrolite under a pressure of 1.5 GPa, which results in the expansion of 

unit cell volume of the host framework. However, the insertion must be triggered at 

elevated temperatures, in contrast to the room-temperature behavior of ZIF-8 observed 

here. The work by Haines et al.24 and Coasne et al.25 showed that at room temperature, 

CO2 can be incorporated into the framework of completely siliceous zeolite ZSM-5 

(silicalite-1) with a pore size slightly larger than that of natrolite and that the presence of 

CO2 in the pore stabilizes the zeolitic framework.24 The pore size of ZIF-8 is in between 

natrolite and silicalite-1. Other contributing factors that must be considered to fully 

understand the insertion mechanism of CO2 into the framework at high pressures include: 

(1) The pressure for the CO2 insertion with respect to the ZIF-8 framework is significantly 

lower (lower than the gigapascal level at room temperature) compared to that for natrolite 

(1.5 GPa at high temperature), suggesting that CO2 must be in fluid state for effective 

diffusion under stressed conditions.23 (2) The unique pressure characteristics of ZIF-8 in 

terms of framework flexibility and pressure-induced enlargement of pore opening and 

volume plays an important role in the facilitation of CO2 insertion at high pressures. At 

high pressures, Moggach et al.11 observed a new phase with the same space group 

symmetry as the ambient ZIF-8, but with a twisted conformation of the imidazolate linkers, 

resulting in total opening of the 6-member ring window. Thus methanol molecules as the 

PTM can be reversibly inserted into the pores even at 1.5 GPa, leading to the expansion of 
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the unit cell volume as well. Using molecular dynamics simulations, Pantatosaki et al.9 

investigated the mobility of the imidazolate ligands of ZIF-8 framework together with 

diffusivity of CO2 in comparison with experimental data. Their results further confirmed 

that the flexibility of the imidazolate linkers plays a critical role in the guest transportation 

dynamics.  More recently, the framework flexibility of ZIF-8 was found to facilitate the N2 

adsorption7 by adopting the high pressure structure via the swing effect of the imidazolate 

linker7,8 even though the loading pressure is substantially lower than the gigapascal level. 

Based on these studies, our IR spectroscopic data consistently suggest that pore opening, 

framework flexibility and diffusivity of CO2 all play an important role in the migration of 

CO2 with respect to the ZIF-8 framework. 

The interaction between CO2 and the framework is further evidenced by the 

different IR features of ZIF-8 loaded with CO2 compared to that of empty framework 

(Figure 3-1a). The most prominent difference, for example, is the appearance of an intense 

absorption band at around 1620 cm-1 in the spectrum of the ZIF-8 loaded with CO2, which 

can be assigned to the C=C stretching mode of the imidazole ring. The enhancement of this 

mode, which is otherwise lacking in the pure ZIF-8, strongly suggests the interaction 

between CO2 and the framework on the specific site of the imidazole ring. The adsorption 

site of gaseous CO2 in the ZIF framework has been extensively investigated both by 

experiments and simulations. Most studies established that preferential adsorption sites are 

located in specific regions close to the organic imidazolate linkers rather than the zinc 

atoms.6,9,26 Thus our spectroscopic observations are consistent with previous 

interpretations that the major interaction sites of ZIF-8 framework for CO2 are the organic 

linkers. In situ X-ray diffraction measurements at high pressure on the ZIF-8 and CO2 
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system would be helpful to elucidate the exact interaction mechanism between CO2 and 

the framework. 

Being guest molecules, CO2 can, in turn, influence the stability of ZIF-8 under high 

pressure substantially. Using synchrotron far-IR spectroscopy, the structural stability of the 

empty ZIF-8 framework was examined in the lattice region (Figure 3-4). Pressure-induced 

distortion of [ZnN4] tetrahedral as well as irreversible amorphization was observed as 

evidenced by the splitting and broadening of the Zn-N stretching and bending modes and 

the depletion of the lattice modes. In addition, our previous mid-IR measurements on empty 

ZIF-8 framework showed that the C=N stretching mode at 1584 cm-1 was very sensitive to 

compression, first by exhibiting a significant red shift in the pressure region below 1.6 

GPa,13 and subsequently being weakened at higher pressures, indicating the distortion of 

imidazolate ring. When ZIF-8 and CO2 mixture was compressed to higher pressures (e.g., 

2.65 GPa, Figure 3-5), however, no obvious change in the IR bands of the framework was 

observed (see Figure 3-6 and Table 3-1), in strong contrast to the pressure behavior of the 

pure empty ZIF-8 framework. Furthermore, the near zero pressure dependence of the C=N 

mode (Table 3-1) was observed for the ZIF-8 loaded with CO2, and its constant IR intensity 

(Figure 3-5) indicates that when CO2 is inserted into the framework, the imidazolate rings 

are much less distorted and thus the rigidity of the entire framework is substantially 

enhanced. Overall, the chemical and mechanical robustness of the framework formed by 

the relatively stiffer metal centered tetrahedrons as joints but with flexible linkers makes 

ZIF-8 an interesting and promising agent for the storage of CO2 (and perhaps other gases) 

at high pressures conditions. 
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Figure 3-4. Far-IR spectra of ZIF-8 upon compression to 2.61 GPa and decompression to 

ambient pressure. The bands at 420 and 290 cm-1 can be attributed as Zn-N stretching and 

bending modes, respectively; the lower frequency modes are assigned as framework lattice 

vibrations. 
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Figure 3-5. IR spectra of ZIF-8 loaded with CO2 upon compression and decompression in 

comparison with those of pure ZIF-8 at similar pressures. The band labeled with an asterisk 

indicates the position of the C=N stretching mode of the ZIF-8 framework (see text). 
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Figure 3-6. IR frequencies of selected modes of the ZIF-8 framework loaded with CO2 as 

a function of pressure. 
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Table 3-1. Pressure dependence (dν/dP, cm-1/GPa) of IR modes of CO2 loaded ZIF-8 from 

0 to 2.65 GPa 

 

Mode Frequency (cm-1) Pressure dependence (cm-1/GPa) 

1 759.0 5.2 

2 953.9 2.3 

3 995 5.5 

4 1146.4 2.8 

5 1179.8 5.2 

6 1310.4 4.3 

7 1584 -0.1 

8 1625.5 1.0 
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3.5 Conclusions 

In summary, we demonstrated a pressure-enhanced CO2 storage in ZIF-8 using in 

situ FTIR spectroscopy. Two types of CO2 molecules (inside the framework and outside as 

bulk medium) can be differentiated by the combination IR bands of CO2 unambiguously 

due to the CO2 adsorption in the framework. Strong interactions between CO2 and 

framework are apparent from the IR features of the framework in the C=C stretching 

region, providing consistent information about the possible interaction site. As guest 

molecules, CO2 can substantially influence the structural stability of the ZIF-8 framework. 

The enhanced CO2 storage capacity of ZIF-8 at high pressure provides new insight into the 

gas capture and storage applications of ZIFs. 
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Chapter 4  

4 The Structural Stability of and Enhanced CO2 Storage 
in MOF MIL-68(In) under High Pressures Probed by 
FTIR Spectroscopy 

4.1 Introduction 

Metal-organic frameworks (MOFs) are crystalline porous materials that consist of 

metal ions / clusters bridged by organic linking groups to form one-, two-, or three-

dimensional coordination networks. Over the past decade, more than 20,000 MOFs with 

diverse structures and functionalities have been reported and studied,1,2 owing to their 

potential applications in a variety of areas, including gas storage,3-6 molecular separations,7-

9 heterogeneous catalysis,10-13 and drug delivery.14-17 In the large MOF family, one series 

of MOF material denoted MIL-68 has attracted much recent attention because of its 

distinctive structure which contains two types of channels with different opening sizes. The 

first MIL-68 material (with meal ion V) was synthesized by Ferey and coworkers18 in 2004 

and several other analogs with different metal-ions (Ga,19 In,19 Fe20 and Al21) were further 

reported later. All these isostructures of MIL-68, which crystallizes in Cmcm space group, 

are built up from the connection of corner-sharing metal-centered octahedral units, 

MO4(OH)2 with the terephthalate ligands, in which the meatal center is six coordinated 

with four oxygens from carboxylate groups and two hydroxyl oxygens. The adjacent 

octahedral units are linked together via two hydroxyl groups located in trans positions and 

connected through carboxylate functions (Figure 4-1a). If the octahedra are considered as 

nodes, their connections with the terephthalate groups give rise to the formation of the so-

called Kagome  ́net, composed of hexagonal rings delimited by six triangular rings, with 

an opening diameter of 6.0-6.4 and 16-17 Å respectively (Figure 4-1b).19 Such a structural 
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topology containing two distinct pore sizes makes MIL-68 a promising candidate for 

applications such as gas storage and separation.21,22  

 

Figure 4-1. (a) Local structure and Indium coordination environment of MIL-68 (In). (b) 

View of the structure of activated MIL-68 (In) along c axis, showing the arrangement of 

hexagonal and triangular channels. The DMF molecules in the channels of as-made 

framework can be mostly removed upon activation. 

 

The structural stability of MOFs is crucial to their applications. In previous studies 

of MIL-68, sorption measurements were performed at pressures up to 50 bar,21 however 

the effect of higher external pressures (e.g., in the gigapascal range) on the framework has 

not been examined so far. In fact, only a handful of MOFs have been studied under high 

pressures previously. Much of the early work has mainly focused on (1) the mechanical 

properties in response to pressure;23-31 (2) the pressure-induced phase transitions / 

amorphizations upon compression and their reversibilities upon decompression32-38 and (3) 

the pressure-enhanced interactions between host frameworks and guest molecules.39-44  
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Take a few examples from the latter two directions, since the interest of our study lays in 

the enhanced sorption properties of MOFs under high pressure. Moggach et al.33 observed 

a reversible crystalline-to-crystalline phase transition of ZIF-8 in pressure transmitting 

medium (PTM) at around 1.5 GPa, which increased the volume of the unit cell.  Lapidus 

et al. 36 demonstrated that external pressure (0.9-1.8 GPa) can be exploited to provide a 

novel and unexpected means to transform a dense interpenetrated framework system 

Zn(CN)2 into a new porous material, in the presence of small molecule pressure-

transmitting fluids. Our prior work42 suggested that pressure can play a regulating role in 

the insertion and extrusion of CO2 with respect to the ZIF-8 framework, even at room 

temperature. These work and high pressure studies on other nano-porous materials (e.g. 

zeolites)45-47 demonstrate that pressure can provide a new approach to achieve structural 

modifications for the framework including changes in pore size, opening and geometry, 

channel shape and internal surface area. Subsequently, application of external pressure on 

the frameworks far beyond the practical gas adsorption pressure may significantly enhance 

their adsorption properties. Therefore, exploring the high-pressure behavior of MIL-68 is 

important for its gas storage and separation applications. Herein, we report the first in situ 

high-pressure investigation of MIL-68(In) and its performance for CO2 storage by FTIR 

spectroscopy. Particular attention is focused on (1) the differences in stability and 

reversibility of the structural modifications between MIL-68(In) with and without solvent 

molecules; (2) the role of encapsulated guest molecules (PTM) in the stability and 

transformation of the framework under high pressure; (3) the pressure dependence of CO2 

storage in the framework and the host-guest interaction between the framework and CO2 
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and (4) understanding the structural origin of the MOF framework promoting CO2 storage 

under high pressures with the aid of Monte Carlo simulations. 

 

4.2 Experimental section 

The as-made MIL-68(In) sample was prepared by hydrothermal synthesis from a 

mixture of indium nitrate (1.05 mmol, 408.2 mg), terephthalic acid (1.2 mmol, 200 mg)  

and dimethylformamide (DMF, 70 mmol, 5 mL).19 Specifically, the reactants were placed 

in a Teflon-lined autoclave and heated for 48 h at 100 °C in an oven. The resulting white 

powder was filtered off and washed with DMF and consisted of elongated needlelike 

crystallites of 20-200 μm size. The yield was 83% based on indium. The activated MIL-

68(In) was obtained by heating the as-made sample in a vacuum gas manifold at 250 °C 

for 6 hours to remove the solvent molecules encapsulated inside the framework. The 

crystallinity of the samples were checked by powder X-ray diffraction (XRD). 

  A diamond anvil cell (DAC) equipped with type II diamonds with culet sizes of 

600 μm was used to generate high pressures. A hole with a diameter of 200 μm was drilled 

in the center of “pre-indented” stainless steel gaskets and used as a sample chamber. Ruby 

chips (Al2O3 doped with Cr3+) were added in the sample chamber as the pressure calibrant, 

and the pressure was determined from the well-established ruby R1 fluorescence line shift. 

Spectral grade KBr was added in the sample chamber when necessary to resolve strong IR 

peaks. The samples with 30 μm in thickness were loaded into the DAC. In order to focus 

on the intrinsic pressure behavior of MIL-68 (In), both the as-made and activated sample 

were loaded without PTM. In the entire pressure region (0-11 GPa), no significant 
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nonhydrostatic effect was observed from the ruby fluorescence profile. In addition, the 

activated sample was loaded with nujol as PTM to study the possible interactions between 

the sample and the PTM that may enter the channels of the framework during compression. 

In order to study the performance for CO2 storage, the activated MIL-68(In) powder 

samples were loaded into the DAC together with solid CO2 in a cryogenic bath of liquid 

nitrogen at a temperature below the melting point of dry ice (i.e., < −78 °C) by introducing 

pure gaseous CO2. Then the cell was carefully sealed with minimal possible pressure (~0.5 

GPa) at low temperature before warming up to room temperature. Upon loading the 

sample, in situ IR spectra were obtained using a customized IR micro-spectroscopy system 

with details described in Chapter 1.48 Multiple runs were carried out for reproducibility 

and all measurements were performed under room temperature. During both compression 

and decompression and in between runs, sufficiently long time was allowed for equilibrium 

to rule out any kinetic effect and no time dependent behavior was observed.  

  The framework structures and CO2 storage properties were studied using first 

principle and molecular mechanics simulations. Firstly, the geometry optimizations of 

MIL-68(In) framework are performed by Dmol349,50 at the DFT-PBE level with a double 

numerical basis set plus dynamic polarization functions (DNP).51 The convergence 

threshold values are specified as 1 × 10-5 Ha for energies, 2 × 10-3 Ha/ Å for gradients, and 

5 × 10-3 Å for displacements, respectively. The self-consistent field (SCF) convergence 

tolerance is set to 1 × 10-6 Ha. The gas adsorption properties were simulated using the 

Grand Canonical Monte Carlo (GCMC) method52, which was implemented in the sorption 

module in Materials Studios 7.0. During GCMC simulations, the MIL-68(In) framework 

was assumed to be rigid with constrained atoms. The vdW interactions between the CO2 
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molecule and the MIL-68(In) are described by the Dreiding force field53 but with the 

revised Lennard-Jones (LJ) parameters54 obtained from our first-principle calculations. A 

series of fixed pressure simulations were carried out at room temperature (298 K) from 1 

to 105 bar. At each pressure, the GCMC simulation consisted of 1×106 steps to allow 

equilibration, followed by 1×107 steps to sample the configuration space. 

 

4.3 Results  

4.3.1 IR spectra of as-made and activated MIL-68(In) at ambient 
pressure 

Figure 4-2 shows the IR spectra of as-made and activated MIL-68(In) at ambient 

conditions, which are consistent with those reported previously.19 Most of the absorption 

bands for the two samples are associated with the vibrations of the organic units (i.e. 

terephthalate acid). For example, the bands in the spectral region of 700 - 900 cm-1 are 

associated with the out-of-plane bending of the benzene ring, while those between 1000 

and 1200 cm-1 are assigned as benzene ring in-plane bending. The peaks at around 1400 

and 1560 cm-1 are attributed to symmetric and asymmetric stretch modes of the carboxylate 

groups attached to indium centers. The detailed assignments for the selected IR bands55 are 

listed in the supporting information Table 4-1. In addition, both the spectra present a main 

band (ν1) at ~ 3700 cm-1 characteristic of the bridging structural OH units. A weaker 

shoulder can be found at slightly lower wavenumber. It is well established that the 

frequency of νOH decreases with the pore size, as already reported in the case of zeolites. 

Jacob et al. reported that when OH groups vibrate in the 6- and 8-membered rings, a red 

shift occurs compared to the frequency at which their vibration would occur in larger 
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pores.56 Indeed, in the MIL-68(In) framework, 1/3 of the hydroxyl groups point towards 

the voids of the triangular channels while 2/3 are orientated towards the hexagonal 

ones.19,20 Thus, the band with the higher frequency can be assigned to OH groups in the 

large pores (hexagonal channels), and that with lower frequency being thus characteristic 

of the OH groups in the small pores (triangular channels). The frequency difference (19 

cm-1) of the OH units in the triangular pores between the as-made and activated framework 

is likely due to a fraction of the hydroxyl groups experiencing a weak perturbation with 

DMF molecules before activation.57 Besides these common IR features, some differences 

in the IR spectrum can be observed upon activation of the sample. Firstly, in contrast to the 

intense and broad band assigned to water in the region 3000 – 3500 cm-1 of the as-made 

sample, the spectrum for the activated sample indicates that most of the adsorbed water 

were removed. Secondly, the sharp decrease of the intensity of the band at 1667 cm-1 (ν2) 

corresponding to C=O bonds of DMF inside the as-made framework suggests the 

elimination of most of the solvent molecules. Furthermore, the disappearance of the band 

around 780 cm-1 (ν12) which is due to the residual terephthalate acid in the as-made 

framework indicates that the free acid was detached from the framework. All these 

observations of the differences in the spectra suggest that the guest molecules including 

water, solvent and free acid were mostly removed upon activation.  
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Figure 4-2. IR spectra for as-made and activated MIL-68(In) in the frequency region (a) 

600-4000 cm-1, with the inset showing the OH stretching modes in the enlarged spectral 

region of 3610-3700 cm-1 at the top; (b) 1200-1800 cm-1.  
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Table 4-1. Assignments for selected IR modes (cm-1) of MIL-68(In) at ambient pressure 

 

Mode 

Frequency (cm-1) 

Assignments 
as-made 

MIL-68 

activated 

MIL-68 

terephthalic 

acid55 

ν1 

3667 3668 

3665 

OH stretching (in hexagonal channel) 

3643 3662 OH stretching (in triangular channel) 

ν2 1666   C=O stretching (DMF) 

ν3 1570 1559 1576 Asymmetric OCO stretching 

ν4 1506 1505 1509 CCH bending + C=C stretching 

ν5 1400 1395 1424 Symmetric OCO stretching 

ν6 1157 1158 1168 CCH bending + COO bending 

ν7 1091 1103 1136 CCH bending + C=C bending 

ν8 1020 1020 1019 
CCC out-of-plane bending + CCH 

bending 

ν9 877 877  

CH out-of-plane bending ν10 823 824 832 

ν11 813 813 819 

ν12 781  784 
OH out-of-plane bending 

(terephthalate acid) 

ν13 748 747 735 C-COO out-of-plane bending 
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4.3.2 IR spectra of as-made MIL-68(In) upon compression  

The in situ IR spectra of the as-made MIL-68(In) were acquired as a function of 

pressure up to 9.7 GPa, followed by complete decompression at room temperature. The 

selected IR absorption bands of as-made MIL-68(In), shown in Figure 4-3, exhibit 

significant changes even upon slight compression below 1 GPa. For example, both the 

intensity of ν13 and ν12 modes experience a major enhancement at a low pressure of 0.13 

GPa. The ν11 and ν10 mode begin to merge whereas the ν9 mode begins to split. The initial 

compression also lead to the appearance of two new IR bands labeled as νA at 938 cm-1 and 

νB at 986 cm-1, owing to the interaction between DMF and the framework. Moreover, the 

most remarkable change is the νO-H mode in the hexagonal channels at 3667 cm-1, which 

totally disappears during compression. This could be due to the formation of hydrogen 

bonds between OH units and the solvent molecules DMF in the hexagonal pores. At the 

pressure of 0.75 GPa, the ν11 and ν10 modes merge into one peak and the ν9 mode further 

splits. Besides, the O-H stretch mode in the triangular channels at 3643 cm-1 vanishes as 

well, indicating the enhanced interaction between the OH units and DMF within the 

triangular pores. Further compression results in continuous broadening of the IR bands, 

including the gradual broadening of the O-C-O stretch modes at ~ 1400 and 1570 cm-1 and 

the C=O stretch mode of DMF. At the highest pressure of 9.73 GPa, even though the IR 

profile is much broadened compared to ambient spectrum, most of the bands are still 

characteristic of the organic ligand, suggesting that the framework is still intact under 

pressure up to 9.73 GPa. In particular, the gentle change of O-C-O modes which are directly 

linked to the metal center indium indicates the metal-linker bond (In-O) are not broken 

with increasing pressure.  
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Figure 4-3. The IR spectra of as-made MIL-68(In) upon compression in the frequency 

region (a) 650-1250 cm-1; (b) 1250-1750 cm-1; (c) 3600-3800 cm-1. 
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Then the IR spectra of as-made MIL-68(In) were collected upon decompression all 

the way back to ambient pressure. Upon complete decompression, the recovered sample 

exhibits the same spectrum as the original sample. Especially the O-H stretch mode that 

experiences drastic changes are clearly recovered. The comparison suggests that the 

structural modifications of as-made MIL-68(In) are completely reversible in the pressure 

region 0-9 GPa in which the framework structure are highly preserved. 

The frequency of selected IR bands of the as-made MIL-68(In) during compression 

is shown in Figure 4-4, along with the pressure dependencies listed in Table 4-2. In general, 

most of the IR modes exhibit regular pressure-induced blue shifts, consistent with that the 

bonds become stiffened upon compression. For example, ν2 – ν12 mode show slight blue 

shifts (pressure dependence < 5 cm-1∙GPa-1) with increasing pressure. In strong contrast, 

the O-H modes merge upon initial compression to 0.13 GPa and completely disappear upon 

further compression above 1 GPa. The pressure-sensitive behavior of νO-H is most likely 

due to the formation of hydrogen bonding between the C=O bond of DMF and O-H group 

of the framework when external pressure applies and subsequently the O-H modes are 

highly weakened.58 Further compression to 9.7 GPa results in slight deformation of the 

framework because of the gentle changes of the frequencies with increasing pressure.  
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Figure 4-4. Frequency of IR modes of as-made MIL-68(In) as a function of pressure from 

0 to 9 GPa in the spectral region of (a) 750-3750 cm-1; (b) 1375-1695 cm-1.  
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Table 4-2. Pressure dependence (dν/dP, cm-1·GPa-1) of IR modes of as-made MIL-68(In) 

from 0 to 9 GPa  

 

IR Mode Frequency (cm-1) dν/dP (cm-1·GPa-1) 

ν2 1666 0.7 

ν3 1570 2.2 

ν4 1506 3.0 

ν5 1400 2.5 

νB 986 3.8 

νA 938 
12.0 

(0-3 GPa) 

2.0 

(4-9 GPa) 

ν9 

888 3.1 

877 1.6 

ν10 823 1.9 

ν12 781 4.2 
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4.3.3 IR spectra of activated MIL-68(In) upon compression  

The study above on as-made MIL-68(In) demonstrates the strong guest-host 

interactions within the framework in response to compression. We then focused on the 

intrinsic pressure behavior of activated MIL-68(In), and the selected IR spectra are shown 

in Figure 4-5. Upon initial compression to 0.12 GPa, the major change of the IR profile is 

the sudden broadening of νO-H modes with a drop of intensity, similar to that of as-made 

framework. As discussed in the scenario of as-made framework, the drastic change of OH 

mode is associated with the strengthened hydrogen bonding. However, the activated 

framework contains very few guest species (i.e., DMF) in the pores. Thus the response of 

OH modes to pressure might be due to the formation of hydrogen bonding between OH 

units and the adjacent carboxylic group within the unit cell of the framework. Further 

compression leads to gradual broadening of the peaks, accompanied with band splitting 

(ν13 mode). At the highest pressure of 9.3 GPa, the IR profile can be characterized as a 

largely broadened pattern, indicating the transformation to disordered or amorphous 

structure. Upon complete decompression, the spectrum of the recovered sample, especially 

the O-H stretch mode does not exhibit a similar profile to that of the original sample, 

suggesting that the framework has been partially modified. Hence the modification of 

activated framework is irreversible, in strong contrast to that of as-made sample. 

Nonetheless, the other major IR bands of the recovered sample are still characteristic of the 

organic linker, indicating that the entire activated framework has survived a compression 

pressure of 9.3 GPa without a permanent breakdown although the local structures have 

been modified.      
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Figure 4-5. IR spectra of activated MIL-68(In) upon compression in the frequency region 

(a) 700-1250 cm-1; (b) 1200-1750 cm-1; (c) 3500-3700 cm-1. 
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In order to have a better understanding of pressure effects on the structure, the 

frequency of selected IR modes of activated MIL-68(In) as a function of pressure were 

illustrated in Figure 4-6, along with the pressure dependences listed in Table 4-3. For most 

of the bands in Figure 4-6a besides νO-H, the pressure coefficients are small in magnitude 

(i.e., < 5 cm-1∙GPa-1), indicating that the bond strength is not very sensitive to compression 

in a broad pressure region. Also these IR modes (except for ν11 mode) exhibit regular 

pressure-induced blue shifts, in accord with that the bonds become stiffened upon 

compression. However, the O-H stretch modes exhibit an obvious red shifts, suggesting 

the weakening of O-H bonds. Upon slight compression to 0.12 GPa, the O-H modes (a 

doublet) merge into a single peak and its frequency drops with increasing pressure. 

Meanwhile, it can be seen from Figure 4-6b that although the carboxylate bands show small 

blue shifts overall, the frequency of both of the peaks (ν5 and ν3) decreases upon 

compression to 0.13 GPa. The initial weakening of both O-H and C-O modes suggest the 

strengthening of metal-linker (In-O) bonds that consist of In-O octahedron, in which all the 

six oxygens are either connected to carbon (denoted as O1, Figure 4-7a) or hydrogen atoms 

(denoted as O2). As pressure increases, the O-H mode becomes further weakened (red shift) 

while the C-O modes are stiffened (blue shift). The opposite pressure behavior of these two 

modes may be due to the slight distortion of the In-O octahedron, since all the oxygens are 

connected to the In center.  Previous high-pressure studies on Mg(OH)2 and Ca(OH)2 

observed similar red shift of the O-H stretch mode upon compression and suggest that the 

negative pressure dependence of the mode is due to the influence of hydrogen bonding on 

the O-H vibration.59 In our case, the distance from the hydrogen atom of a hydroxyl group 

to one of the adjacent oxygen of the octahedral units is ~ 3 Å with the O-H-O angle  of ~ 
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78° at ambient pressure (Figure 4-7a), which does not favor the condition of hydrogen 

bonding. However when the framework is compressed under high pressure, the OH units 

are highly stretched and subsequently the distance between hydroxyl hydrogen and the 

adjacent oxygen as well as the angle of O-H-O are significantly changed (Figure 4-7b), 

leading to the formation of hydrogen bonding within the framework. In addition, the slight 

distortion of In-O octahedral units facilitates the formation of hydrogen bonds. In situ X-

ray diffraction measurements of the framework, especially the changes of In-O distances 

under high pressures would be helpful to further support the speculation. Nonetheless, the 

pores of the activated framework remain intact in the pressure range from ambient to 9.3 

GPa. 
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Figure 4-6. Frequency of IR modes of activated MIL-68(In) as a function of pressure from 

0 to 9 GPa in the spectral region of (a) 750-3680 cm-1; (b) 1390-1585 cm-1.  
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Table 4-3. Pressure dependence (dν/dP, cm-1·GPa-1) of IR modes of activated MIL-

68(In) from 0 to 9 GPa  

 

IR Mode Frequency (cm-1) dν/dP (cm-1·GPa-1) 

ν1 3643 -5.7 

ν3 1570 2.8 

ν5 1400 2.8 

ν6 1157 1.4 

ν7 1091 1.7 

ν8 1020 1.6 

ν9 877 1.1 

ν10 823 2.0 

ν11 813 -0.7 

 



www.manaraa.com

82 

 

 

Figure 4-7. Illustration of local structure of MIL-68(In) at (a) ambient pressure; (b) high 

pressure (HP), showing hydrogen bonding between the OH units and carboxyl oxygens. 

 

4.3.4 IR spectra of activated MIL-68(In) with PTM upon compression  

The above studies involve the pressure effects on as-made and activated MIL-

68(In) under non-hydrostatic compression, in which the existence of solvent molecules 

inside the as-made framework is believed to be responsible for the different pressure 

behavior of the two samples. Besides the influence of solvent molecules on the pressure 

behavior of MOFs, the interaction between the framework and PTM, which distribute the 

pressure homogeneously in the sample chamber has also been shown to play an important 

role in the framework stability and phase transition. For example, Chapman et al.39 reported 

different compressibility of Cu-btc framework, which depends on the size and penetrability 

of the guest molecules. Graham et al.41 showed that application of pressure on Cu-btc 

causes solvent to be squeezed into the pores until a phase transition occurs, driven by the 

sudden compression and expansion of equatorial and axial Cu–O bonds. Lapidus et al.36 
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demonstrated that new phases of molecular framework Zn(CN)2 can be formed under 

pressure by using different pressure transmitting fluids. Specifically, the transition is driven 

by an increase in overall atomic packing density by including fluid molecules in the pores 

of framework. Thus the study of influence of PTM on the framework under high pressure 

is of great interest.  

The following results show the activated framework being compressed up to 18 

GPa with the use of a PTM, which allows pressure to be applied evenly to the framework. 

Nujol, a mixture of alkanes of size ranging from C15 to C40 was used as the hydrostatic 

medium. Upon compression the O-H stretch modes (ν1) merge into a single peak and then 

is gradually broadened, in contrast to the drastic changes of O-H bands under non-

hydrostatic compression (Figure 4-8a). The gradual change of O-H mode indicates the O-

H bond is not that sensitive to compression with the existence of PTM. The other major IR 

bands, i.e. the carboxylate stretch modes and the ring bending modes (ν3 – ν13), also show 

continuous pressure-induced broadening during compression. At the highest pressure of 

18.02 GPa, most of the bands were much broadened compared with those at ambient 

pressure, suggesting a transition to an amorphous structure. However, upon complete 

decompression, the recovered material exhibited a very similar profile to the original 

sample. These observations indicate that the structural modifications of MIL-68(In) are 

mostly reversible with the existence of hydrostatic fluids in a higher pressure region in 

which the framework structure are highly conserved.   

The frequency of selected IR modes of MIL-68(In) with PTM are shown in Figure 

4-8b. The pressure dependences listed in Table 4-4 are generally small in magnitude, which 

are consistent with those of IR modes under non-hydrostatic compression. The O-H stretch 
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mode still shows red shift as pressure increases, indicating the weakening of the O-H bond. 

However, the lower pressure dependence of the OH mode (-1.03 cm-1/GPa) in the region 

2-18 GPa, compared to that (-5.67 cm-1/GPa) under non-hydrostatic compression indicates 

that the OH units are less pressure-sensitive with the existence of PTM in a much broader 

pressure range. The pressure dependences of all the other modes of MIL-68(In) are lower 

than those of activated framework as well, suggesting that the framework is less 

compressible in the company of PTM. The enhanced stability of the framework usually 

results from the pressure-induced inclusion of guest molecules in the pores of MOFs. For 

example, previous X-ray studies on ZIF-8 showed that the framework began to amorphize 

at 0.34 GPa without PTM, whereas stayed crystalline at 1.47 GPa with PTM due to its 

interaction with the framework.32,33 For MIL-68 (In), the guest nujol molecules are small 

enough (5-7 Å) to be forced into the large hexagonal channels of the framework upon 

compression.60 The space-filling mechanism makes the framework more resilient to 

compression and thus the OH units are much less pressure-sensitive.  
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Figure 4-8. (a) IR spectra of activated MIL-68(In) with PTM upon compression. (b) 

Frequency of IR modes of activated MIL-68(In) with PTM as a function of pressure from 

0 to 18 GPa.  
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Table 4-4. Pressure dependence (dν/dP, cm-1·GPa-1) of IR modes of activated MIL-

68(In) with PTM from 0 to 18 GPa.  

 

IR Mode Frequency (cm-1) dν/dP (cm-1·GPa-1) 

ν1 3643 
-7.9 

(0-2 GPa) 

-1.0 

(3-18 GPa) 

ν5 1400 2.5 

ν6 1157 1.3 

ν7 1091 1.5 

ν8 1020 1.6 

ν9 877 1.4 

ν10 823 2.1 

ν11 813 0.0 

ν13 746 1.1 
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4.3.5 IR spectra of activated MIL-68(In) loaded with CO2 upon 
compression  

MOFs are known for their application of green-house gases storage. The adsorption 

performance of MIL-68(Al), one of the MIL-68 family, has been well investigated by Yang 

and his co-workers,21 who demonstrated that CO2 molecules mainly occupy the hexagonal 

pores through the interaction with OH groups upon adsorption (up to 50 bar) while the 

triangular pores remain inaccessible for CO2. It would be interesting to see the performance 

of the framework for CO2 adsorption when the pressure is elevated to gigapascal range. 

Figure 4-9 shows the IR spectrum of MIL-68(In) loaded with CO2 compared with the 

spectrum of pure framework at a similar pressure (0.4 GPa), in which some major 

differences can be observed. Firstly, a few additional peaks can be seen in the top spectrum 

due to the existence of CO2: the bending mode of CO2 (ν2) at around 670 cm−1 and the 

combination modes of ν3 + 2ν2 and ν3 + ν1 at ~ 3600 and 3700 cm−1 respectively. The 

asymmetric stretching mode (ν3) at 2325 cm-1 is not shown in the figure because of its 

extremely high absorption intensity. Furthermore, the splitting of ν2 and ν3 + ν1 mode of 

CO2 suggests that there are two types of CO2 in the mixture. The one with higher frequency 

is consistent with the CO2 outside the framework in the pressure medium in solid state and 

the one with lower frequency represents the CO2 molecules trapped inside the framework, 

a similar scenario discussed in our previous work.42 Therefore, the splitting of the CO2 IR 

modes clearly suggests the CO2 adsorption in the framework. Secondly, one of the νOH 

modes, which is assigned to the OH groups in the triangular pores, is unaffected upon the 

insertion of CO2 in the framework, in strong contrast to the pressure behavior of the OH 

groups in the activated framework upon compression. This observation suggests that the 

insertion of CO2 enhanced the stability of the framework. According to Yang’s study, the 
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OH groups of MIL-68(Al) would completely vanish upon the adsorption of gases including 

CD3CN, CO2 and H2S, due to the strong interaction between the guest and host.21 As a 

result, the fact that the OH band of the triangular pores stays relatively unaffected while 

the CO2 is inserted into the framework indicates that the triangular channels is not readily 

accessible to CO2 at 0.42 GPa. We thus concluded that CO2 molecules mainly occupy the 

hexagonal channels of the framework upon initial compression. Thirdly, both the 

symmetric OCO stretching (ν5) and asymmetric OCO stretching (ν3) in the spectrum of 

MIL-68(In) loaded with CO2 show an obvious blue shift with respect to the OCO modes 

of the activated framework, suggesting that the O-C-O bonds become stronger (Figure 4-

9b). This indicates the interaction between CO2 and the framework makes the framework 

less compressible and more robust. Moreover, an additional peak at around 1350 cm-1, 

which can be assigned as a combination mode of CCH bending and C=C stretching, was 

observed in the IR profile of MIL-68(In) loaded with CO2, as a result of the interaction 

between CO2 and the framework. The appearance of this mode, strongly suggests the host-

guest interaction on the specific site of the organic linker. Our molecular mechanics 

simulations provide more detailed information which will be discussed next. Overall, our 

spectroscopic observations are not only consistent with the previous study but also 

demonstrate the enhanced interactions between CO2 and MIL-68 framework under high 

pressure.   
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Figure 4-9. IR spectra of activated MIL-68(In) and MIL-68(In) loaded with CO2 at around 

0.4 GPa in the frequency region (a) 600-3800 cm-1; (b) 1325-1800 cm-1. 
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  Upon compression of MIL-68(In) loaded with CO2 to 0.96 GPa, as seen in Figure 

4-10a, the OH stretching mode becomes gradually broadened, indicating the enhanced 

interaction between CO2 and OH groups in the triangular channels of the framework. 

Besides, it is clear that the OH stretching mode experiences a red shift upon compression. 

(See the IR frequency of the O-H stretch mode as function of pressure in Figure 4-11 and 

the pressure dependence in Table 4-5.)  It is further weakened as pressure increases and 

eventually disappears above 1.50 GPa. Highly likely, CO2 forms strong hydrogen bonds 

between its oxygen atom and the hydrogen atom of OH groups in the pores. Upon 

decompression the pressure behavior of OH band is found to be reversible, as seen in Figure 

4-10b, suggesting that CO2 molecules substantially migrate out of the triangular pores of 

the framework (below 1.5 GPa). Therefore, the OH group is a key indicator of the insertion 

and extrusion of CO2 into the triangular pores of MIL-68(In) in response of pressure. When 

the pressure is down to 0.34 GPa, the ν3 + ν1 doublet of CO2 can still be observed, showing 

that CO2 remains in the bigger hexagonal pores of the framework.  When the pressure is 

completely released, the CO2 molecules escape from both the pores, as all the CO2 

characteristic peaks are no longer observable.  
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Figure 4-10. IR spectra of MIL-68(In) loaded with CO2 upon (a) compression and (b) 

decompression in the frequency region 3580-3800 cm-1.  
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Figure 4-11. Frequency of the combination modes of CO2 and the OH stretch mode of 

MIL-68(In) as a function of pressure from 0.42 to 1.88 GPa.  

 

Table 4-5. Pressure dependence (dν/dP, cm-1·GPa-1) of the combination modes of CO2 

and the OH stretch mode of MIL-68(In) from 0.42 to 1.88 GPa 

 

IR Mode Frequency (cm-1) dν/dP (cm-1·GPa-1) 

ν3 + ν1 

(CO2) 

3711 8.2 

3701 2.9 

νO-H 3647 -7.0 

ν3 + 2ν2 

(CO2) 

3602 4.5 
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4.4 Discussion 

The above results showed different pressure behavior among four different 

systems: the as-made MIL-68(In), the activated framework, the activated sample with PTM 

and the activated framework loaded with CO2. In the pressure range of 0-9 GPa, the 

activated framework undergoes an irreversible transformation upon recovery, whereas the 

as-made framework and especially the OH units experience a completely reversible 

deformation. The solvent molecules occluded in the channels of as-made framework are 

believed to play a key role in restoring the structure and crystallinity of the framework 

when the pressure was released. Prior studies of as-made ZSM-5 (Zeolite Socony Mobil–

5)61 under high pressure showed that the interaction between the template molecules and 

zeolite framework preserves the local structures associated with the original topology at 

high pressure. Upon releasing pressure, the template redirects the silicate species to 

partially reform the initial topology.  For as-made framework of MIL-68(In), the solvent 

molecules DMF may play similar role to that of template molecules in ZSM-5. For the 

activated framework, the weakening and soft behavior of OH modes is associated with the 

formation of hydrogen bonding between the adjacent In-O octahedrons within the 

framework. The OH modes are not recovered upon complete decompression as the empty 

framework is partially modified during compression. The existence of solvent molecules 

is thus clearly pivotal to the reversibility of the framework. 

The stability of activated MIL-68(In) is significantly enhanced when nujol is added 

as the hydrostatic medium with the sample, because of the pressure-induced insertion of 

nujol into the pores of the framework. Previous high-pressure studies of porous molecular 

frameworks have demonstrated the potential for fluid molecules to progressively fill the 
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pores with increasing pressure.36,39,40 For MIL-68(In), the nujol molecules act as an inert 

space-filling agent which makes the framework more resistant to pressure. As a result, the 

OH units remain unaffected and are much less sensitive to pressure than that of the 

framework without hydrostatic medium. 

As guest molecules to the MIL-68 framework, both nujol and CO2 were found to 

enhance the stability of the framework. However, they have different impacts on the 

compression behavior of the MIL-68(In) framework, especially on the OH bridging units. 

Nujol appears to serve as the physical space-filling agent that makes the framework less 

compressible and thus the OH groups remain intact and only show red shift upon 

compression. In contrast, CO2 not only serves as a pressure medium, but chemically 

interacts with the framework. Due to the strong interaction of hydrogen bonding between 

the OH units and CO2, the IR intensity of the OH band of the hexagonal pores substantially 

diminished upon initial CO2 loading (even at 1 atm) while the OH band of the triangular 

pores without CO2 occupying remains. At elevated pressure around 1.5 GPa, the OH band 

of the triangular pores finally vanishes as CO2 are forced into the small channels. These 

unique signatures strongly suggest the chemical nature of the guest-host interaction in the 

CO2 loaded activated framework. 

The differential accessibility exhibited by the hexagonal pores (i.e., for CO2 or other 

larger guest molecules (nujol) at low pressures, e.g., < 0.35 GPa) the triangular pores (i.e., 

for CO2 at elevated pressure of > 1.5 GPa) is of great interest. Yang’s computational study21 

demonstrated that CO2 molecules are preferentially accommodated in the triangular pores 

due to a higher degree of confinement that creates the strongest energetic adsorption sites. 

However, the MIL-68(Al) framework in their work was not fully activated, thus leaving 
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the triangular pores inaccessible for small gas molecules under adsorption pressure (up to 

50 bar). Our study is thus not inconsistent with the previous work at pressures that are 

lower than 1 GPa. When pressure was extended to 1.5 GPa, the CO2 molecules can be 

squeezed into the triangular channels and the process is found to be reversible upon 

decompression. Thus pressure can play a regulating role in the insertion and extrusion of 

CO2 molecules with respect to the triangular pores of MIL-68(In). The CO2 adsorption in 

the triangular pores of MIL-68(In) is herein reported for the first time experimentally.  

To understand the differential binding affinity of CO2 inside the MIL-68 framework 

and the origin of the chemical nature of guest-host interactions at high pressures, we 

performed Grand Canonical Monte Carlo simulations on the adsorption behavior of CO2 

at different external compression pressures. Figure 4-11 shows the CO2 probability density 

distributions in the MIL-68 framework at three representative pressures, i.e., ambient, 0.1 

GPa and 10 GPa. These pressures were chosen to examine 1) the reproducibility of the 

simulation method on the adsorption behaviour of CO2 studied before and 2) the trend and 

pressure-dependence of CO2 adsorption at relatively lower and higher pressure aligned 

with the two experimentally identified pressure regions. At ambient pressure, the 

simulations show a CO2 probability density of 90% at the triangular channel centre, 

suggesting that the triangular channel is the preferred binding sites. This result is consistent 

with that by Yang et al.21 When compressed to about 1 kbar, the CO2 distribution density 

is substantially shifted to the hexagonal channel. Although some density is found in the 

triangular channel at this pressure, the CO2 probability density in the hexagonal channel is 

dominant over the triangular channels with a ratio of 90%:10%, highly consistent with our 

experimental observation that at below 0.35 GPa, the hexagonal channel is the preferential 
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binding channel of CO2. At the highest simulation pressure, i.e, 10 GPa, we found that both 

hexagonal and triangular channels are clearly occupied by CO2. The probability 

distribution values suggest that triangular pores are slightly more populated by CO2 (i.e., 

13%) than that at 0.1 GPa and the overall CO2 adsorption capacity was found to be 10% 

higher that at 0.1 GPa, in excellent accord with our experimental observations. 

 

Figure 4-12. Simulated contour plots of the CO2 probability density (in arbitrary unit) 

distributions along the hexagonal and triangular channels of MIL-68(In) framework at (A) 

1 bar, (B) 1000 bar or 0.1 GPa and (C) 105 bar (or 10 GPa). 

 

Finally, we examined the CO2 storage capacity by MIL-68 based on the IR 

absorption intensity of the two components of the ν3 + ν1 combination mode. We estimated 

that up to ～ 62% of the loaded CO2 was inserted in the framework (including the 

hexagonal and triangular pores) upon compression representing an enhanced CO2 intake 

capacity compared to ZIF-8 framework (i.e., ~ 33%) that we reported previously.42  The 

different CO2 storage capacities as well as different compression behaviors of CO2 in the 

framework are believed to be associated with the structural difference and thus the different 

guest-host interaction mechanism between MIL-68 and ZIF-8. For instance, the CO2 

molecules absorbed in MIL-68(In) are more sensitive to pressure than CO2 trapped in ZIF-
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8. According to Figure 4-10a, the pressure dependences for ν3 + 2ν2 and ν3 + ν1 mode of 

CO2 inside the framework of MIL-68(In) are 4.47 and 2.88 cm-1·GPa-1 respectively, which 

are higher than those of CO2 trapped in ZIF-8.42 This is mainly due to the difference in the 

pore size and opening between the two frameworks. ZIF-8 has three-dimensional cavities 

with a small window size (3.4 Å), while MIL-68 (In) contains much larger one-dimensional 

open channels (16 Å for the hexagonal channel and 6 Å for the triangular channel). Once 

trapped, CO2 molecules in MIL-68(In) have a less confined environment than CO2 inside 

the cavities of ZIF-8 and thus are more pressure-sensitive. Moreover, the CO2 adsorption 

mechanism and the host-guest interactions vary in the two frameworks. For CO2 adsorption 

in ZIF-8, the framework flexibility and pressure-induced enlargement of pore opening play 

an important role in the facilitation of CO2 insertion, which mainly locate in the regions 

close to the organic imidazolate linkers through van der Waals' interaction.62 On the other 

hand, the MIL-68(In) framework contains the OH units, which serve as the binding sites 

for CO2 adsorption through hydrogen bonding between each other. It has been established 

that in order to enhance the CO2 binding affinity in MOFs, three main approaches are most 

intensively investigated which includes amine grafting, introducing strongly polarizing 

functional groups and open metal cation sites.63 In this case, the OH units of MIL-68(In) 

serve as functional groups that can offer enhancement of CO2–MOF interactions. As a 

result, CO2 molecules preferentially reside at the corners of the hexagonal pores near OH 

units of the framework upon initial adsorption. Our molecular mechanics simulations 

clearly suggest that the regions near the OH units in the hexagonal channels are the 

preferential binding sites for CO2 with highest density distributions (Figure 4-11). Upon 

further compression to above 1.5 GPa, CO2 substantially occupy both the whole hexagonal 
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pores and the triangular pores with larger regions than at lower pressures. Therefore the 

existence of OH units as the CO2 binding sites makes the guest-host interaction stronger 

for MIL-68(In), and the large pore sizes further contribute to the superior adsorption 

performance of MIL-68(In). 

 

4.5 Conclusions  

In summary, the behavior of as-made and activated MIL-68(In) and their 

reversibilities under high pressure were investigated by IR spectroscopy. Overall, the 

structures of both frameworks are highly stable upon compression to 9 GPa, but with some 

modifications on the local structure especially the bridging O-H units, which are very 

sensitive to pressure.  Upon the release of external pressure, the structural modifications 

are found to be completely reversible for as-made MIL-68(In) while irreversible for the 

activated framework.  The difference in the reversibility of framework is attributed to the 

solvent DMF molecules contained in the channels. In addition, the stability of the activated 

framework was studied under hydrostatic compression by using PTM. The pressure-

induced inclusion of PTM makes the framework more resilient to pressure (18 GPa) and 

the structural modifications are completely reversible upon decompression.  Furthermore, 

the performance of MIL-68(In) for CO2 adsorption under high pressure was investigated. 

Our results show that the hexagonal pores are readily accessible for CO2 at relative low 

pressures (e.g., < 0.35 GPa), while the triangular pores becomes accessible for CO2 at 

elevated pressures (e.g., > 1.5 GPa). The pressure-regulated CO2 occupation in different 

channels of the MIL-68 framework is found to be reversible between compression and 

decompression. The unique adsorption behavior of CO2 in the framework is associated 
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with the OH units that contribute as the primary binding sites through hydrogen bonding 

with CO2. These observations are strongly supported by our simulation results. The high 

stability and enhanced CO2 adsorption of MIL-68(In) under high pressure makes it a 

promising candidate for greenhouse gas storage.  
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Haouas, M.; Taulelle, F.; Audebrand, N.; Latroche, M. Inorganic Chemistry 2008, 47, 

11892. 

(20) Fateeva, A.; Horcajada, P.; Devic, T.; Serre, C.; Marrot, J.; Grenèche, J.-M.; Morcrette, 

M.; Tarascon, J.-M.; Maurin, G.; Férey, G. European Journal of Inorganic Chemistry 

2010, 2010, 3789. 

(21) Yang, Q.; Vaesen, S.; Vishnuvarthan, M.; Ragon, F.; Serre, C.; Vimont, A.; Daturi, M.; De 

Weireld, G.; Maurin, G. Journal of Materials Chemistry 2012, 22, 10210. 

(22) Wu, L.; Xue, M.; Qiu, S.-L.; Chaplais, G.; Simon-Masseron, A.; Patarin, J. Microporous 

and Mesoporous Materials 2012, 157, 75. 

(23) Bennett, T. D.; Tan, J. C.; Moggach, S. A.; Galvelis, R.; Mellot-Draznieks, C.; Reisner, B. 

A.; Thirumurugan, A.; Allan, D. R.; Cheetham, A. K. Chemistry-A European Journal 2010, 

16, 10684. 

(24) Li, W.; Probert, M. R.; Kosa, M.; Bennett, T. D.; Thirumurugan, A.; Burwood, R. P.; 

Parinello, M.; Howard, J. A. K.; Cheetham, A. K. Journal of the American Chemical 

Society 2012, 134, 11940. 

(25) Ogborn, J. M.; Collings, I. E.; Moggach, S. A.; Thompson, A. L.; Goodwin, A. L. Chemical 

Science 2012, 3, 3011. 

(26) Ortiz, A. U.; Boutin, A.; Fuchs, A. H.; Coudert, F.-X. Physical Review Letters 2012, 109, 

195502. 

(27) Ortiz, A. U.; Boutin, A.; Fuchs, A. H.; Coudert, F.-X. The Journal of Physical Chemistry 

Letters 2013, 4, 1861. 

(28) Cai, W.; Katrusiak, A. Nature Communications 2014, 5, 4337. 

(29) Bennett, T. D.; Sotelo, J.; Tan, J.-C.; Moggach, S. A. CrystEngComm 2015, 17, 286. 

(30) Serra-Crespo, P.; Dikhtiarenko, A.; Stavitski, E.; Juan-Alcaniz, J.; Kapteijn, F.; Coudert, 

F.-X.; Gascon, J. CrystEngComm 2015, 17, 276. 

(31) Su, Z.; Miao, Y.-R.; Mao, S.-M.; Zhang, G.-H.; Dillon, S.; Miller, J. T.; Suslick, K. S. 

Journal of the American Chemical Society 2015, 137, 1750. 

(32) Chapman, K. W.; Halder, G. J.; Chupas, P. J. Journal of the American Chemical Society 

2009, 131, 17546. 

(33) Moggach, S. A.; Bennett, T. D.; Cheetham, A. K. Angewandte Chemie International 

Edition 2009, 48, 7087. 



www.manaraa.com

101 

 

(34) Hu, Y.; Kazemian, H.; Rohani, S.; Huang, Y.; Song, Y. Chemical Communications 2011, 

47, 12694. 

(35) Gagnon, K. J.; Beavers, C. M.; Clearfield, A. Journal of the American Chemical Society 

2013, 135, 1252. 

(36) Lapidus, S. H.; Halder, G. J.; Chupas, P. J.; Chapman, K. W. Journal of the American 

Chemical Society 2013, 135, 7621. 

(37) Ortiz, A. U.; Boutin, A.; Gagnon, K. J.; Clearfield, A.; Coudert, F.-X. Journal of the 

American Chemical Society 2014, 136, 11540. 

(38) Spencer, E. C.; Kiran, M. S. R. N.; Li, W.; Ramamurty, U.; Ross, N. L.; Cheetham, A. K. 

Angewandte Chemie International Edition 2014, 53, 5583. 

(39) Chapman, K. W.; Halder, G. J.; Chupas, P. J. Journal of the American Chemical Society 

2008, 130, 10524. 

(40) Graham, A. J.; Allan, D. R.; Muszkiewicz, A.; Morrison, C. A.; Moggach, S. A. 

Angewandte Chemie International Edition 2011, 50, 11138. 

(41) Graham, A. J.; Tan, J.-C.; Allan, D. R.; Moggach, S. A. Chemical Communications 2012, 

48, 1535. 

(42) Hu, Y.; Liu, Z.; Xu, J.; Huang, Y.; Song, Y. Journal of the American Chemical Society 

2013, 135, 9287. 

(43) Graham, A. J.; Banu, A.-M.; Duren, T.; Greenaway, A.; McKellar, S. C.; Mowat, J. P. S.; 

Ward, K.; Wright, P. A.; Moggach, S. A. Journal of the American Chemical Society 2014, 

136, 8606. 

(44) Li, Q.; Li, S.; Wang, K.; Liu, J.; Yang, K.; Liu, B.; Zou, G.; Zou, B. The Journal of Physical 

Chemistry C 2014, 118, 5848. 

(45) Haines, J.; Cambon, O.; Levelut, C.; Santoro, M.; Gorelli, F.; Garbarino, G. Journal of the 

American Chemical Society 2010, 132, 8860. 

(46) Lee, Y.; Liu, D.; Seoung, D.; Liu, Z. X.; Kao, C. C.; Vogt, T. Journal of the American 

Chemical Society 2011, 133, 1674. 

(47) Santoro, M.; Gorelli, F.; Haines, J.; Cambon, O.; Levelut, C.; Garbarino, G. Proceedings 

of the National Academy of Sciences 2011, 108, 7689. 

(48) Dong, Z. H.; Song, Y. Journal of Chemical Physics C 2010, 114, 1782. 

(49) Delley, B. The Journal of Chemical Physics 2000, 113, 7756. 

(50) Delley, B. The Journal of Chemical Physics 1990, 92, 508. 

(51) Wang, Y.; Perdew, J. P. Physical Review B 1991, 44, 13298. 

(52) Duren, T.; Bae, Y.-S.; Snurr, R. Q. Chemical Society Reviews 2009, 38, 1237. 



www.manaraa.com

102 

 

(53) Mayo, S. L.; Olafson, B. D.; Goddard, W. A. Journal of Physical Chemistry 1990, 94, 

8897. 

(54) Martin, M. G.; Siepmann, J. I. Journal of Physical Chemistry B 1998, 102, 2569. 

(55) Téllez S, C. A.; Hollauer, E.; Mondragon, M. A.; Castaño, V. M. Spectrochimica Acta Part 

A: Molecular and Biomolecular Spectroscopy 2001, 57, 993. 

(56) Jacobs, P. A.; Mortier, W. J. Zeolites 1982, 2, 226. 

(57) Shearer, G.; Forselv, S.; Chavan, S.; Bordiga, S.; Mathisen, K.; Bjørgen, M.; Svelle, S.; 

Lillerud, K. Topics in Catalysis 2013, 56, 770. 

(58) Chen, B.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E. B. Journal of the American 

Chemical Society 2008, 130, 6718. 

(59) Kruger, M. B.; Williams, Q.; Jeanloz, R. The Journal of Chemical Physics 1989, 91, 5910. 

(60) Grice, K.; Mesmay, R. d.; Glucina, A.; Wang, S. Organic Geochemistry 2008, 39, 284. 

(61) Fu, Y. Q.; Song, Y.; Huang, Y. I. Journal of Physical Chemistry C 2012, 116, 2080. 

(62) Perez-Pellitero, J.; Amrouche, H.; Siperstein, F. R.; Pirngruber, G.; Nieto-Draghi, C.; 

Chaplais, G.; Simon-Masseron, A.; Bazer-Bachi, D.; Peralta, D.; Bats, N. Chemistry-A 

European Journal 2010, 16, 1560. 

(63) Zhang, Z.; Zhao, Y.; Gong, Q.; Li, Z.; Li, J. Chemical Communications 2013, 49, 653. 

 

 

 

 

 

 

 

 

 



www.manaraa.com

103 

 

Chapter 5  

5 High Pressure Study of CO2 Adsorption in MOF α-
Mg3(HCOO)6 by Vibrational Spectroscopy 

5.1 Introduction 

Metal-organic frameworks (MOFs) are an emerging class of porous crystalline 

materials that are constructed from metal ion clusters and organic linkers.1,2 The potential 

applications of MOFs such as gas storage and separation,3-7 catalysis,8-12 drug delivery13-15 

and sensors16-18 have been studied extensively over the last decade. Within the large 

varieties of MOFs currently known, frameworks that have Mg2+ ion as metal centers have 

received a considerable amount of attention, due to their low cost, nontoxicity and low 

atomic weight.19-22 Out of this specific group of MOFs, α-Mg3(HCOO)6 further 

demonstrated its capability of being a gas storage material with its permanent porosity and 

good stability in various solvents within a wide temperature range.22 The framework 

structure of α-Mg3(HCOO)6 which crystallizes in monoclinic space group P21/n, along with 

the local structures of the Mg-O clusters are shown in Figure 1. The framework contains 

interconnecting one-dimensional chains of edge-shared octahedra of Mg1 and Mg3 with 

vertex-shared MgO6 octahedra of Mg2 and Mg4 via Mg1, forming narrow one dimensional 

zig-zag channels along the b axis with the pore size 4.5 Å × 5.5 Å (Figure 5-1a). All of the 

formate anions adopt similar binding modes, with one oxygen connecting to a single metal 

center (μ1-O) and the second oxygen bridging between two other metals (μ2-O). There are 

three different coordination environments for the metal centers. Mg1 bonds to six μ2-O, 

Mg2 and Mg4 each bond to four μ1-O and two μ2-O, whereas Mg3 bonds to two μ1-O and 

four μ2-O (Figure 5-1b).   
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Figure 5-1.  The structure of activated α-Mg3(HCOO)6 at ambient conditions. (a) The 

framework structure along b axis, showing the one-dimensional zigzag channels with a 

dimension of 4.5 Å × 5.5 Å. The green polyhedrons represent Mg-O clusters. (b) Four 

Different Mg coordination environments.  

 

Our recent work on α-Mg3(HCOO)6 demonstrated its high stability against external 

high pressure up to 13 GPa, with an irreversible crystal-to-crystal transition above 2 GPa.23 

In addition, α-Mg3(HCOO)6 framework composed of exclusively carbonyl linkers that can 

be considered as substantial CO2 moiety in the framework suggests strong affinity between 

CO2 and Mg2+, making additional intake of CO2 into the framework thermodynamically 

favorable. Thus the intrinsic rigidity of the framework as well as all the other properties 

listed makes the investigation of enhanced uptake of CO2 at much higher pressures than 

ambient an interesting possibility. In this work, we explored the effects of high external 

pressure on the CO2 adsorption in α-Mg3(HCOO)6 using Infrared (IR) and Raman 
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Spectroscopy, which demonstrated pressure-enhanced CO2 interactions with the 

framework on compression. 

 

5.2 Experimental section  

The α-Mg3(HCOO)6 sample was synthesized according to the literature.22 Specifically, a 

mixture of 10 mL DMF, 0.23 mL of formic acid (6 mmol) and 0.77 g of Mg(NO3)2·6H2O 

(3 mmol) was placed in a 20 mL scintillation vial. The vial was capped and immersed in a 

silicon oil bath that was kept at a constant temperature of 110 °C for 40 h. During this 

period, high quality crystals of the as-made sample were deposited (0.34 g, 81.7%). The 

crystals could then be filtered in air until dry. Activated α-Mg3(HCOO)6 was obtained by 

heating the as-made sample to 130 °C for 36 h in vacuum condition. Its crystallinity was 

checked by XRD. A diamond anvil cell (DAC) equipped with type II diamonds with culet 

sizes of 600 μm was used to generate high pressures. The pure desolvated α-Mg3(HCOO)6 

powder samples were loaded into the DAC together with solid CO2 in a cryogenic bath of 

liquid nitrogen at a temperature below the melting point of dry ice (i.e., < −78 °C). Then 

the cell was carefully sealed in the liquid nitrogen bath before warming up to room 

temperature. A few ruby chips were preloaded in the DAC as the pressure calibrant and the 

pressure was determined by the well-established ruby fluorescent method.24 A customized 

IR and Raman micro-spectroscopic system with details described in Chapter 1 were used 

for all mid-IR absorption and Raman measurements.23 Far-infrared measurements were 

performed at the U2A beamline at the National Synchrotron Light Source (NSLS), 

Brookhaven National Laboratory (BNL). All measurements were performed under room 

temperature and multiple runs were carried out for reproducibility. 
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5.3 Results 

5.3.1 IR and Raman spectra of α-Mg3(HCOO)6 loaded with CO2  

Figure 5-2a shows the optical image of the sample chamber that consists of α-

Mg3(HCOO)6 sample (the opaque parts) with CO2 (the transparent areas). The 

representative IR absorption spectra of α-Mg3(HCOO)6  loaded with CO2 and pure α-

Mg3(HCOO)6 at similar pressure (i.e. 0.3-0.4 GPa) are shown in Figure 5-2b, with the inset 

that displays the zoomed spectral region of 2650 - 2950 cm-1 and 3550 – 3750 cm-1 of the 

two samples. The IR spectrum of pure α-Mg3(HCOO)6 at 0.33 GPa is almost identical with 

that of activated α-Mg3(HCOO)6 at ambient reported previously.23 The comparison of the 

two spectra suggests the successful loading of CO2 as evidenced by the additional peaks of 

the top spectrum observed. The two strong absorption bands at 670 and 2350 cm−1 in the 

top spectrum are attributed to the bending mode (ν2) and asymmetric stretching mode (ν3) 

of CO2, respectively. Moreover, two high-frequency bands were observed at around 3600 

and 3710 cm−1, which are well understood as the CO2 combination modes of ν3 + 2ν2 and 

ν3 + ν1, respectively due to the strong Fermi resonance effect.25 The IR spectrum of α-

Mg3(HCOO)6 loaded with CO2 not only indicates the effective CO2 loading but also 

provides strong evidence for guest−host interactions between the framework and CO2. 

Firstly, the modifications in the number and shape of νs(OCO) at ~1400 cm-1and νas(OCO) peaks 

at ~1600 cm-1 strongly indicate that one of the preferential CO2 adsorption sites of α-

Mg3(HCOO)6 are located in particular regions close to the formate linkers. Secondly, a new 

band at around 1160 cm-1 that can be assigned as the C-H in-plane bending mode (δ(C-H)) 

appears upon CO2 loading with the framework, providing consisting information on the 
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interaction between CO2 and the organic linker, which can be further evidenced by the 

enhancement of the intensity and merging of ν(C-H) mode of the CO2 loaded framework.  
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Figure 5-2.  (a) Optical image of the sample chamber consisting of activated α-

Mg3(HCOO)6 loaded with CO2 at 0.37 GPa and room temperature. (b) Selected mid-IR 

spectrum of α-Mg3(HCOO)6 loaded with CO2 at 0.37 GPa compared with that of the 

activated α-Mg3(HCOO)6 at 0.33 GPa. The inset shows the enlarged parts of the two 

spectra in the region of 2650 – 2950 cm-1 and 3550 – 3750 cm-1, respectively. 
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Figure 5-3. Selected Raman spectrum of α-Mg3(HCOO)6 loaded with CO2 at 0.42 GPa 

compared with the empty α-Mg3(HCOO)6 at 0.44 GPa and α-Mg3(HCOO)6 loaded with 

DMF at 0.45 GPa in the spectral region 50 – 400 cm-1 (a); Empty α-Mg3(HCOO)6 at 0.44 

GPa in the spectral region 1200 – 3000 cm-1 (b).  
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Figure 5-3 shows the Raman spectrum of α-Mg3(HCOO)6 loaded with CO2 

compared with that of empty framework at similar pressure (i.e. 0.4 GPa). The additional 

peaks of the CO2 loaded framework at 1273 cm-1 (2ν2 of CO2) and 1384 cm-1 (ν1 of CO2) 

confirmed the successful loading of CO2. From the lattice region (Figure 5-3a), it can be 

seen that the lattice modes of the CO2 loaded samples are significantly different from the 

ones of pure α-Mg3(HCOO)6, yet consistent with those of the DMF loaded framework.23 

This observation suggests that guest loading in α-Mg3(HCOO)6 could lead to the change of 

crystal structure of the framework, independent of the guest. Moreover, the significant 

changes in the νs(OCO) and ν(C-H) modes (Figure 5-3b) were also observed upon CO2 loading, 

in accord with our observations in the IR spectra, indicating that CO2 interacts with the 

framework in particular regions near the formate ligands.  

 

5.3.2 Mid-IR spectra of α-Mg3(HCOO)6 loaded with CO2 at high 
pressures 

In order to study the pressure effects on the performance of α-Mg3(HCOO)6 for CO2 

storage, the IR spectra of the framework loaded with CO2 were measured upon 

compression and decompression. As mentioned in our previous work,26 the CO2 

overtone/combination bands (ν3 + 2ν2 and ν3 + ν1) can be used to monitor the insertion of 

CO2 into the pores of framework. It can be seen from Figure 5-4a that the ν3 + ν1 mode of 

CO2 at above 3710 cm-1 becomes broadened and asymmetrical upon compression from 

initial loading at 0.3 GPa. At the pressure higher than 3 GPa, the ν3 + ν1 mode clearly splits 

into a doublet, indicating two types of CO2 exist in the system, with the high-frequency 

component representing the CO2 residing outside the framework as the excessive pressure 
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medium, while the low-frequency component characterizing the CO2 molecules inside the 

framework of α-Mg3(HCOO)6.
27 Typically it is difficult to monitor the behavior of ν2 and 

ν3 modes of CO2 due to their extremely intense IR absorptions. But in this case, even the 

combination mode ν3 + ν1 of CO2 is saturated, indicating that a significant amount of CO2 

has been trapped in the sample chamber and a large portion of CO2 are inserted into the 

pores of α-Mg3(HCOO)6. The splitting of the ν3 + ν1 mode of CO2 upon compression 

strongly suggest a pressure-enhanced CO2 interaction with the framework. Continuously 

compressing to higher pressures (up to 9.82 GPa) resulted in the blue shift of all modes. 

Upon decompression, the ν3 + ν1 doublet starts to merge back into a singlet below 2.61 

GPa. When the pressure is completely released, the CO2 has escaped from the DAC 

completely (Figure 5-4b). The compression−decompression cycles can be repeated several 

times reversibly with very little hysteresis, and the splitting of ν3 + ν1 mode always occurs 

at 2.6−3.0 GPa. Thus the pressure behavior of CO2 combination modes suggests a 

reversible pressure-enhanced CO2 interaction with the α-Mg3(HCOO)6 framework.  
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Figure 5-4. Selected mid-IR spectra of α-Mg3(HCOO)6 loaded with CO2 in the spectra 

region of 3580–3800 cm-1 upon compression from 0.30 to 9.82 GPa (a); upon 

decompression to ambient (b); in the spectra region of 1100–3000 cm-1 upon compression 

and as recovered to 0.37 GPa (c).  
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The pressure-enhanced interplay between α-Mg3(HCOO)6 and CO2 are also 

accompanied by some structural modifications on the framework. Figure 5-4c shows the 

selected IR bands of the α-Mg3(HCOO)6 framework loaded with CO2 upon compression 

together with the spectrum of the recovered sample upon decompression. All the selected 

IR bands, i.e. the new C-H in-plane bending mode, the OCO symmetric and asymmetric 

stretching modes and the C-H stretching mode experienced gradual broadening and a 

decrease of intensity upon compression. In particular, the νs(OCO) mode starts to split at 4.09 

GPa, implying the pressure-induced distortion of formate ligands bound to the metal and 

enhanced CO2 interaction with the formate ligands of the framework as pressure increases. 

Moreover, it is noteworthy that the change of the C-H stretching mode of the empty α-

Mg3(HCOO)6 framework was drastic upon initial compression and eventually disappeared 

below 1 GPa. In strong contrast to the sensitive pressure behavior of the empty framework, 

the intensity of the C-H stretching mode of the CO2 loaded framework exhibits continuous 

reduction with increasing pressure from 0.37 GPa to 3.00 GPa and sustains until 4.94 GPa. 

This observation indicates that the CO2 inclusion makes the framework more resilient to 

pressure, consistent with our prior study on the guest loaded α-Mg3(HCOO)6 that was much 

more stable to external pressure than that of the activated phase. The spectrum of the 

recovered sample (top spectrum) resembles that of the initial sample at 0.37 GPa, 

suggesting that the structural modifications of the framework are reversible. 

 

5.3.3 Raman and far-IR spectra of α-Mg3(HCOO)6 loaded with CO2 at 
high pressures 

Supplementary to the mid-IR spectra that are sensitive to the local structural 

changes of the organic linker upon compression, the Raman and far-IR spectra of the CO2 
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loaded α-Mg3(HCOO)6 provide additional information on the changes in the lattice region 

of the framework and the metal-ligand bonding at high pressures. Figure 5-5 shows the 

Raman and far-IR spectra of α-Mg3(HCOO)6 loaded with CO2 upon compression and 

decompression. The Raman peaks in the region 100-400 cm-1 are associated with the lattice 

modes of the α-Mg3(HCOO)6 framework, whereas the peak of the lowest frequency (80 

cm-1 at 0.69 GPa) is attributed to the external mode (Eg) of crystalline CO2 outside the 

framework (Figure 5-5a).28 Upon compression from 0.69 GPa to 4.46 GPa, the Eg mode of 

CO2 increases intensively, while the lattice modes of the framework become much 

broadened. The changes indicate the sample consists of highly crystalline solid CO2 outside 

the framework and a reduced crystallinity of the α-Mg3(HCOO)6  framework in such a  

pressure region. Upon further compression from 6.4 GPa to 11.41 GPa, the Raman profile 

in the lattice region are dominated by three external modes of crystalline CO2 (phase I), 

which are the Eg, Fg- and Fg+ mode (at 115, 145, 216 cm-1 respectively, shown in Figure 5-

5a).28 The disappearance of the lattice modes of the framework indicates the transition from 

a crystalline to an amorphous phase for α-Mg3(HCOO)6 above 4.46 GPa. Upon 

decompression, the changes of the Raman peaks are found to be reversible. When the 

pressure in completely released, the spectrum of the recovered sample resembles that of 

the CO2 loaded framework at 0.69 GPa except for the disappearance of the CO2 external 

mode. Thus the amorphization of the α-Mg3(HCOO)6 framework loaded with CO2 above 

4.5 GPa is reversible.  

The changes of the far-IR spectra (Figure 5-5b) are consistent with those of Raman 

spectra of the α-Mg3(HCOO)6 framework loaded with CO2 upon compression. The IR band 

at around 413 cm-1 at 0.69 GPa is due to Mg-O stretching and the bands below 400 cm-1 



www.manaraa.com

114 

 

are attributed to the lattice modes of the α-Mg3(HCOO)6 framework. No IR bands 

associated with solid CO2 are observed in the far-IR region, due to the weak IR absorption 

of solid CO2.
29 The disappearance of the Mg-O stretching mode and the external modes of 

the framework above 4.46 GPa suggests the amorphization for the CO2 loaded framework. 

The spectrum of the recovered sample (top spectrum), when the CO2 completely escape 

the sample chamber, is almost identical with that of CO2 loaded framework at 0.69 GPa 

except for the frequency shifts. This observation strongly suggests that CO2 does not 

interact with the metal center of the α-Mg3(HCOO)6 framework.  

The combined Raman and far-IR data suggest that the CO2 loaded α-Mg3(HCOO)6 

framework undergoes a reversible crystalline-to-amorphous phase transition at around 4.5 

GPa. Thus the connectivity of the pores remains intact in the amorphous phase at high 

pressures. The pressure behavior of the framework loaded with CO2 is similar to those of 

benzene or DMF loaded framework which has no phase transition within 4 GPa, consistent 

with the fact that the framework containing guest molecules is more stable to external 

pressure than that of the empty framework. 
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Figure 5-5. (a) Selected Raman spectra of α-Mg3(HCOO)6 loaded with CO2 in the spectra 

region of 50 – 400 cm-1 upon compression from 0.69 to 11.41 GPa and as recovered to 0.40 

GPa and ambient pressure.  (b) Selected far-IR spectra of α-Mg3(HCOO)6 loaded with CO2 

in the spectra region of 100 – 550 cm-1 upon compression from 0.69 to 11.41 GPa and as 

recovered to 0.40 GPa and ambient pressure.   
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5.4 Discussion 

In order to examine the stability and phase transformation of the CO2 loaded α-

Mg3(HCOO)6 on compression in great details, we monitored the IR frequencies and Raman 

shifts as a function of pressure as shown in Figures 5-6. The pressure coefficients (dν/dP 

(cm-1∙GPa-1)) of the IR and Raman modes were calculated by linear regression of the 

experimental data and listed in Tables 5-1 and 5-2, respectively. Generally all the IR and 

Raman modes exhibit regular pressure-induced blue shifts, consistent with that the bonds 

become stiffened upon compression. For mid-IR measurements of the framework loaded 

with CO2, both the δ(C-H) and ν(C-H) mode vanish above 4.09 GPa (Figure 5-6a). Moreover, 

the disappearance of the lattice modes of α-Mg3(HCOO)6 (denoted as 1-8 in Figures 5-6b 

and 5-6c) beyond 4.46 GPa provides clear evidence for the amorphization of the 

framework. The approximate phase transition boundary for the CO2 loaded α-

Mg3(HCOO)6 is thus around 4.50 GPa, as indicated in Figures 5-6.  
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Figure 5-6. (a) IR frequencies of ν(C-H), νs(OCO) and δ(C-H) mode of CO2 loaded α-

Mg3(HCOO)6  as a function of pressure; (b) Raman shifts of the lattice modes (denoted as 

1- 4) of CO2 loaded α-Mg3(HCOO)6  and the lattice modes (Fg+, Fg- and Eg) of solid CO2 

as a function of pressure; (c) IR frequencies of ν(Mg-O) and the lattice modes (denoted as 5- 

9) of CO2 loaded α-Mg3(HCOO)6  as a function of pressure.  
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Table 5-1. Pressure dependences [dν/dP (cm-1∙GPa-1)] of the selected IR bands of α-

Mg3(HCOO)6 loaded with CO2 on compression 

 

IR mode Frequency (cm-1) 

dν/dP (cm-1∙ GPa-1) 

0-4.5 GPa 4.5-11 GPa 

ν(CH) 

2886 7.0  

2887 3.6  

νs(OCO) 

1388  2.4 

1374 1.0 

δ(CH) 1162 2.4  

ν(Mg-O) 413 13.8  

8 335 10.0  

7 262 6.9  

6 220 2.9  

9 232  8.6 

5 159 2.3  
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Table 5-2. Pressure dependences [dν/dP (cm-1∙GPa-1)] of the selected Raman bands of α-

Mg3(HCOO)6 loaded with CO2 on compression 

 

Raman mode Frequency (cm-1) 

dν/dP (cm-1∙ GPa-1) 

0-4.5 GPa 4.5-11 GPa 

4 248 13.5  

3 201 4.2  

2 167 8.7  

1 123 4.5  

Fg+ 216  7.7 

Fg- 100 11.0 5.4 

Eg 80 8.0 3.4 
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Our results demonstrate an enhanced stability of α-Mg3(HCOO)6 framework to 

external high pressure due to the space-filling of the guest CO2. Below 4 GPa, the CO2 

loaded framework experiences no phase change whereas the empty framework undergoes 

an irreversible phase transformation at 2 GPa. Similar pressure behavior were observed for 

the DMF/benzene loaded framework, which further demonstrates the general trend that 

guest molecules can significantly enhance framework resistance to external stress, 

independent of the guest molecules loaded. In addition, the higher stability of the CO2 

loaded framework is further evidenced by the pressure behavior of the internal mode νs(OCO) 

from mid-IR spectra. The pressure dependence of the νs(OCO) mode of the CO2 loaded 

framework (i.e. 1.0 cm-1∙GPa-1) is much lower compared with its counterparts of the empty 

framework (i.e. 13.1 cm-1∙GPa-1),23 indicating that the formate ligands that bound to the 

metal are much less distorted with the existence of CO2 inside the framework.  Thus the 

rigidity of the entire framework is substantially enhanced upon CO2 loading.  

The compression-decompression cycles on CO2 loaded α-Mg3(HCOO)6 reveal an 

reversible pressure-enhanced interactions between CO2 and the framework. As a promising 

candidate for CO2 storage material, the performance of MOFs for CO2 adsorption has been 

widely studied. However, the study of the enhanced guest-host interactions between the 

surrounding CO2 and the MOF framework or other nano-porous materials (e.g. zeolites) 

are sparse.26,27,30 Previous studies have shown that the nature of the interactions between 

CO2 and the framework as well as the migration mechanism are mainly dependent on the 

porosity, the flexibility and the existence of the preferential adsorption sites of the host 

framework. The above factors that influence the performance of α-Mg3(HCOO)6 for CO2 

storage will be discussed in details as follows.  
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Firstly, the porosity of the host framework especially the pore size has a significant 

impact on the threshold conditions of CO2 inclusion into the framework. For example, Lee 

et al.30 demonstrated that only under pressure (1.5 GPa) and elevated temperatures (110 

°C) CO2 can be inserted into the natrolite in which the pore size is just slightly bigger that 

the kinetic diameter of gaseous CO2 (3.3 Å). The α-Mg3(HCOO)6 has a pore diameter 

around 5 Å, which provides enough space for guest molecules CO2 to fit inside the 

channels.  Thus CO2 can be adsorbed into the α-Mg3(HCOO)6 framework upon initial 

loading at low pressures (i.e., < 0.6 GPa when CO2 is in fluid phase) under room 

temperature.  

Secondly, the flexibility of the organic ligand plays an important role in the 

mechanism and performance of CO2 adsorption in MOFs. Earlier work on ZIF-8 revealed 

a so-called “gate opening” effect, under which the imidazolate ligands can be reoriented in 

response to adsorption as well as external pressure to increase the accessible pore volume, 

facilitating the CO2 diffusion and adsorption in the framework.26,31,32 Therefore, ZIF-8 

exhibits excellent performance for CO2 adsorption, with the maximum CO2 uptake of 4.3 

wt% at 298K and ambient pressure, despite its small pore size (3.4 Å).33 In contrast, the 

CO2 adsorption capacity of α-Mg3(HCOO)6 at ambient pressure (1.32 wt%)34 is 

substantially lower than that of ZIF-8, not only owing to the lesser porosity, but also 

because of the rigidity of organic ligands of the framework. Our previous work showed 

that the response of α-Mg3(HCOO)6 framework to compression was initiated by the small 

distortion of the individual Mg2-O and Mg4-O clusters, in contrast to the twist of the 

organic linker of ZIF-8.  This argument is further evidenced by the pressure behavior of 

the Mg-O bond monitored by far-IR measurements in this work. Our results show that the 
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pressure dependence of Mg-O stretch mode (13.8 cm-1/GPa) is substantially higher than 

those of the other modes from the formate ligand (such as νs(OCO) and ν(CH)), indicating that 

the compression on the framework is mainly mediated through the Mg-O bonds. Thus the 

rigidity of the organic ligands make α-Mg3(HCOO)6 less favorable for CO2 adsorption 

compared with ZIF-8.  

Lastly, the existence of preferential adsorption site of MOFs can substantially affect 

their performance for CO2 adsorption.  A typical example is Mg-MOF-7421, an efficient 

CO2 capture media due to the strong affinity between its open metal sites and CO2. Our 

prior studies of MIL-68 (In) showed an outstanding performance for CO2 adsorption not 

only because of the large pore size of the framework, but also due to the presence of the 

preferential adsorption site OH units, which interact strongly with CO2 through hydrogen 

bonding. In this work, unlike Mg-MOF-74, the Mg metal center of α-Mg3(HCOO)6 has no 

interaction with CO2 as it is stably coordinated with six oxygens from the organic ligands. 

The almost identical IR profiles of the CO2 loaded framework and the empty one from the 

far-IR measurements suggested that the Mg-O bonds are not affected upon CO2 adsorption. 

Nonetheless, strong interactions between CO2 and the formate ligand of α-Mg3(HCOO)6 

were observed from the pressure behavior of ν3 + ν1 mode of CO2. The splitting of the ν3 + 

ν1 mode of CO2 loaded α-Mg3(HCOO)6, which suggests two types of CO2 present in the 

system, is distinctively different from what we observed in ZIF-8 or MIL-68 (In). The CO2 

adsorbed in ZIF-8 or MIL-68 (In), which exhibited a broad ν3 + ν1 IR band with a lower 

frequency, is characteristic of fluid-like CO2, in strong contrast to the solid CO2 outside the 

framework which displayed a sharp peak with a higher frequency. However in this case, 

the CO2 included in α-Mg3(HCOO)6 framework under high pressures showed a solid-like 
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feature (sharp peak), which indicates a more localized CO2 inside the pores. The 

localization or reduced mobility of CO2 in the α-Mg3(HCOO)6 framework is highly likely 

due to the strong dipole-dipole interaction between the oxygen of CO2 and the carbon of 

the formate ligand, as illustrated in Figure 5-7. Previous studies demonstrated similar yet 

weaker van der Waals interactions between CO2 and the framework at gas adsorption 

pressures.35 Under much high pressures, the mobility of CO2 in the pores of α-

Mg3(HCOO)6 is highly restricted, resulting from a stronger guest-host interaction induced 

by external pressure. Based on the sharp feature of the ν3 + ν1 mode, CO2 molecules were 

believed to be aligned and in high order within the pores of α-Mg3(HCOO)6.  

 

Figure 5-7. Illustration of CO2 adsorption in α-Mg3(HCOO)6. The grey & red ball-stick 

models represent the CO2 molecules adsorbed inside the pores of the framework. The dash 

lines symbolise the dipole-dipole interaction between CO2 and the formate ligands.  
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5.5 Conclusions  

In summary, in situ IR and Raman spectroscopic measurements of α-Mg3(HCOO)6 

loaded with CO2 were investigated under external high pressure up to 11 GPa. We 

demonstrate a strong guest-host interplay between CO2 and the formate ligand via dipole-

dipole interaction, while the Mg metal center has no interactions with CO2. The CO2 

molecules are highly confined inside the pores due to the strong interaction with the 

framework at high pressures. Moreover, the CO2 loaded α-Mg3(HCOO)6 framework 

undergoes a reversible crystalline-to-amorphous phase transformation at around 4.5 GPa, 

in contrast to the pressure behavior of the empty framework that experience an irreversible 

crystal-to-crystal phase transition at 2 GPa. The chemical connectivity was intact in the 

amorphous phase that maintained the porosity for CO2 storage at high pressures. Our 

observations further demonstrate that guest molecules can significantly enhance the 

stability of the host framework to external pressure. Overall, the chemical and mechanical 

robustness of the framework with the presence of preferential CO2 adsorption site makes 

α-Mg3(HCOO)6 an interesting and promising candidate for CO2 storage at high pressure 

conditions. 
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Chapter 6  

6 Exploring the Remarkable Affinity of MOF CaSDB 
towards CO2 at Extreme Pressure 

6.1 Introduction 

Porous crystalline metal−organic frameworks (MOFs) have attracted intensive 

research attention in recent years because of their intriguing structures, exceptional 

porosities and a wide range of potential applications, including gas storage & separation, 

catalysis, biomedical drug delivery and so on.1-3 Among these applications, the 

investigation of using MOFs as storage media to efficiently trap greenhouse gas such as 

carbon dioxide for clean energy uses is one of the mostly studied fields.4-6 Plentiful MOFs 

with various structures have been examined for their performances of CO2 capture and 

storage.7-10 Within the large varieties of the MOFs capable of gas sorption, the alkaline 

earth MOFs especially the calcium MOFs have been less studied compared with transition 

or lanthanide metal-based MOFs. Considering the natural abundance, non-toxicity, low-

cost as well as the role of calcium in natural CO2 separation and storage,11 the synthesis of 

calcium based MOFs is of particular interest.  

Recently, a highly robust microporous calcium based MOF named CaSDB (SDB = 

4,4′-sulfonyldibenzoate) was successfully synthesized and showed high CO2/N2 

selectivity.12,13 The CaSDB framework is a three-dimensional network, composed of 

corner-sharing calcium polyhedral chains along the crystallographic [010] direction. The 

calcium ion is octahedrally coordinated to five-carboxylate groups and one sulfonyl oxygen 

atom. One of the sulfonyl oxygen atoms of the linker is uncoordinated (Figure 6-1a). Each 

of the calcium polyhedral chains is connected with six other such chains in the [100] and 
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[001] directions through vertex sharing. Such a connectivity leads to the formation of 

diamond-shaped channels along the [010] direction with an average size 5.9 Å × 5.8 Å 

(Figure 6-1b). Disordered water molecules are present within the channel, which can be 

readily removed upon activation by heating to 563 K in vacuum. Remarkably, the activated 

CaSDB framework does not reabsorb water when exposed to air.  

 

 

Figure 6-1. (a) Local structure and Calcium coordination environment of CaSDB; (b) View 

of the structure of activated CaSDB along b axis, showing the diamond-shaped channels 

with the size of ~ 5.5 Å in diameter.  
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For the performance of CO2 storage, CaSDB shows a reversible uptake of CO2 of 

4.37 wt% at 298 K, 1 bar; with a high CO2/N2 selectivity. The specific CO2 adsorption sites 

at the framework has been explored by Plonka et al., who observed that CO2 molecules 

adopt two positions approximately in the middle of the channel through the interaction 

between the delocalized π aromatic system of both phenyl rings of the organic linker and 

the molecular quadrupole of CO2 via single crystal data.14  The CO2 – phenyl ring 

interactions at low pressures (≤ 1 bar) in an alkaline-metal-containing MOFs is novel and 

encouraging in the search for alternative mechanisms for CO2 adsorption under higher 

pressures, as the application of MOFs as a gas storage media sometimes requires extreme 

loading pressures that is far beyond ambient pressure.  So far no study has addressed the 

CO2 storage in CaSDB and guest-host interactions at high pressures in the gigapascal scale, 

despite the adsorption studies at low pressures mentioned above. Application of high 

external pressure on the framework may significantly change the framework topology,15-25 

the pore size opening and thus the adsorption properties.26-33 Thus the stability of the 

framework is pivotal to its gas storage performance. Besides, the storage capacity can be 

substantially enhanced as more CO2 could be inserted into the framework at high pressures.  

In this study, the stability of CaSDB framework and the enhanced CO2 adsorptive 

performance under high pressures were examined by IR and Raman spectroscopy, which 

allows the understanding of local structures, chemical bonding, and thus the nature of 

host−guest interactions between the adsorbed molecules and the framework. We 

demonstrated a high stability of activated CaSDB on compression and a remarkable affinity 

of the framework towards CO2 at high pressures. In addition to the single CO2 adsorption 
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site observed at ambient pressure, new CO2 interaction sites were found at elevated 

pressure, suggesting a pressure-enhanced CO2 storage in CaSDB.  

 

6.2 Experimental section  

The CaSDB sample was synthesized according to the literature.12 The detailed 

procedure is as follows: a mixture of 4,4′-sulfonyldibenzoate acid (H2SDB, 0.1224 g, 0.4 

mmol), Ca(NO3)2·4H2O (0.1890 g, 0.8 mmol), ethanol (9.0 ml) and H2O (1.0 ml) was 

stirred for 10 min in air. Then the mixture was placed in a 100 ml Teflon autoclave and 

heated at 150 °C for 20 minutes. The autoclave was cooled to room temperature, washed 

with fresh ethanol and colorless crystals were collected (0.1077 g, 74.3% yield based on 

the H2SDB reagent). The as-synthesized sample was then activated in a vacuum gas 

manifold at 563 K to remove the solvent molecules inside the channels of the framework. 

The crystallinity of the activated sample was checked by XRD.  

To achieve high pressure, diamond anvil cells (DAC) equipped with type II and I 

diamonds with culet size of 600 μm were used for IR and Raman measurements, 

respectively. Stainless steel gaskets were predrilled with a hole of 200 μm as the sample 

chamber. The samples with 30 μm in thickness were loaded into the gasket along with a 

few ruby chips as the pressure calibrant. To study CO2 storage in CaSDB under high 

pressures, the activated CaSDB powder samples were firstly loaded into the DAC which 

was cooled in a cryogenic bath of liquid nitrogen. Gaseous CO2 was then introduced into 

the sample chamber when the temperature was below the melting point of dry ice (i.e., < 

−78 °C) before the DAC was sealed with minimal possible pressure (~ 0.5 GPa).  After the 
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DAC was brought to room temperature, the internal pressure was measured by analyzing 

the shift in the R1 emission line of the included ruby chips.34 Customized IR and Raman 

micro-spectroscopic system with details described in Chapter 1 were used for all mid-IR 

absorption and Raman measurements.35,36 Far-infrared measurements were performed at 

the U2A beamline at the National Synchrotron Light Source (NSLS), Brookhaven National 

Laboratory (BNL). All measurements were performed under room temperature and 

multiple runs were carried out for reproducibility. 

 

6.3 Results 

6.3.1 IR and Raman spectra of activated CaSDB at ambient pressure 

The IR and Raman spectra of activated CaSDB at ambient conditions are depicted 

in Figure 6-2 from 100 to 3400 cm-1 and with the spectral assignments listed. Our mid-IR 

and Raman measurements of CaSDB are in good agreement with those of previously 

studied;14 while the far-IR spectrum, which is unique to the bonding between the metal 

center and organic ligands, is reported for the first time. In the IR spectrum (bottom 

spectrum of Figure 6-2), the IR bands from 100 to 300 cm-1 are assigned to the lattice 

modes of the CaSDB framework and bands at around 303 and 430 cm-1 are attributed to 

the Ca-O stretching vibrations (ν(Ca-O)). The peaks in the spectral region of 500 – 900 cm-1 

and 1000 – 1200 cm-1 can be assigned as the ring out-of-plane bending and ring in-plane 

bending modes of the benzene rings of SDB, respectively. The band at 1294 cm-1 is due to 

the sulfonyl stretching vibrations (ν(OSO)) of the organic linker. The symmetric carbonyl 

stretching mode (νs(OCO)) can be observed at ~ 1408 cm-1 and the peaks at ~ 1613 cm-1 are 

ascribed to the asymmetric carbonyl stretching vibrations (νas(OCO)).
14  Those well resolved 
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multiple peaks (enlarged in the inset) that are due to the aromatic C-H stretching (νC-H) can 

be observed at 3044, 3062, 3104 and 3217 cm-1.  

200 400 600 800 1000 1200 1400 1600 3200

3000 3100 3200 3300


(Ca-O)

ring out-of-plane bending


(OSO)


(C-H)


s (COO)


as(COO)


(C-H)


(OSO)


s (COO)


as(COO)

IR
 A

b
s
o

rb
a
n

c
e

R
a

m
a
n

 I
n

te
n

s
it
y
 (

a
.u

.)

 

 

Wavenumber (cm
-1
)

ring in-plane bending

lattice modes

Wavenumber (cm-1)

 

Figure 6-2. IR (bottom) and Raman (top) spectra of activated CaSDB at ambient pressure 

in the frequency region of 100- 3400 cm-1, with the inset showing the C-H stretching modes 

in the enlarged spectral region of 3000-3300 cm-1. 

 

Supplementary to the IR measurements, the Raman spectrum of activated CaSDB 

at ambient pressure is shown in on the top of Figure 6-2. The Raman peaks in the spectral 

region of 100–400 cm-1 are assigned to the lattice modes of CaSDB framework, whereas 

the peaks from 600 to 800 cm-1 are associated with out-of-plane bending vibrations of the 

benzene rings. The sulfonyl stretching mode (ν(OSO)) can be found at 1137 cm-1 and the 
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symmetric (νs(OCO)) and asymmetric (νas(OCO)) carbonyl stretching mode can be observed at 

1434 and 1597 cm-1, respectively. In addition, three sharp peaks at 3059, 3074 and 3084 

cm-1 originate from the C-H stretching (ν(C-H)) of the benzene rings. The ambient IR and 

Raman spectra combined provide the full picture of the crystallinity, the metal-ligand 

bonding and the local structure of the organic linker of the activated CaSDB framework.  

 

6.3.2 IR and Raman spectra of activated CaSDB at high pressures 

The far-IR spectra (in the region of 100–550 cm-1) of activated CaSDB were 

collected from ambient to 10.93 GPa and then decompression to ambient pressure, as 

shown in Figure 6-3 (a). Upon compression from ambient to 3.2 GPa, the Ca-O stretching 

modes became gradually broadened along with the disappearance and merging of the 

lattice modes, indicating a decrease of crystallinity of the framework under high pressure. 

Further compression resulted in continuous broadening of the IR bands accompanied by 

mode splitting and eventually an almost flattened pattern of the IR profile at 10.93 GPa, 

suggesting the transformation to an amorphous structure for the framework. Upon 

complete decompression, the IR spectrum of the recovered sample resembles the initial 

spectrum at ambient pressure, which strongly indicates that the amorphization of the 

framework is reversible in the pressure range from ambient to 10.93 GPa.  
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Figure 6-3. IR spectra of CaSDB upon compression from ambient to 10.93 GPa and upon 

recovery in the frequency region (a) 100-550 cm-1 and (b) 1200-3400 cm-1.  

 

While the far-IR data reveal the changes of Ca-O bonding upon compression, the 

mid-IR spectra provide information of the evolution of local structures of the organic 

linkers under high pressures. The selected Mid-IR spectra (1200–3400 cm-1) of activated 

CaSDB upon compression and recovery are shown in Figure 6-3 (b). The most significant 

changes of the IR modes on increasing pressure are the aromatic C-H stretching modes. 

Upon compression to 3.28 GPa, the intensity of the C-H mode at 3104 cm-1 was greatly 

enhanced, along with the merging of the modes at 3044 and 3062 cm-1 at 0.43 GPa.  Upon 

further compression to 10.92 GPa, the C-H mode at 3217 cm-1 merged with other C-H 

modes and became gradually broadened.  The sensitive pressure behavior of the C-H 

modes indicate the enhanced intermolecular interactions, in this case, the ring–ring 
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interaction of the CaSDB framework. However, the other modes in the mid-IR region, such 

as the sulfonyl and carbonyl stretching modes, were not very sensitive to pressure, as they 

did not exhibit obvious changes upon compression. The pressure responses of the sulfonyl 

and carbonyl modes suggest the robustness of the SDB organic linker. Upon complete 

decompression, all the modes were clearly recovered, except for the C-H modes, indicating 

the local structures of the framework has experienced minor modifications. The 

combination of far-IR and mid-IR data at high pressures shows the high stability of the 

CaSDB framework which underwent a reversible amorphization upon compression to 

10.93 GPa.  

The changes of the Raman spectra are consistent with those of IR spectra of 

activated CaSDB upon compression and recovery, as shown in Figure 6-4. The lattice 

modes (denoted as 4) at 171 cm-1 (Figure 6-4a) became gradually broadened as pressure 

increases from ambient to 3.2 GPa, suggesting a decrease of the crystallinity of the 

framework structure. The C-H stretching modes began to merge upon initial compression 

to 0.34 GPa and evolved into a single peak at 1.11 GPa. Further compression led to the 

constant broadening of the modes, in accord to the pressure behavior of the C-H IR modes. 

In addition, the sulfonyl and carbonyl Raman modes exhibited blue shifts on compression, 

similar to their counterpart IR modes. At the highest pressure of 10.73 GPa, the Raman 

modes in the lattice region were much flattened, suggesting the amorphization of the 

framework. Upon release of pressure, the spectrum of the recovered sample is almost 

identical to that of ambient CaSDB except for the C-H modes, especially the lattice region, 

indicating the amorphization of the framework is reversible.  
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Figure 6-4. Raman spectra of CaSDB upon compression from ambient to 10.73 GPa and 

recovery in the frequency region (a) 100-1250 cm-1 and (b) 1400-3200 cm-1. 

 

In order to further examine the stability of the CaSDB framework on compression, 

we monitored selected IR frequencies and Raman shifts as a function of pressure (Figure 

6-5). The pressure coefficients (dν/dP (cm-1∙GPa-1)) of the IR and Raman modes were 

calculated by linear regression of the experimental data and listed in Tables 6-1 and 6-2. In 

general, all the IR and Raman modes exhibit regular pressure-induced blue shifts, 

consistent with that the bonds become stiffened upon compression. Most of the pressure 

coefficients are small in magnitude (i.e., < 5 cm-1∙GPa-1), except for the C-H stretch mode, 

indicating that the bond strength is not very sensitive to compression in the pressure region 

of 0-11 GPa. Thus the analysis of the pressure dependences of IR and Raman modes further 

demonstrate the high stability of the activated CaSDB framework. 
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Figure 6-5. Frequency of selected (a) far-IR; (b) mid-IR; and (c) Raman modes of CaSDB 

as a function of pressure from ambient to 11 GPa. 
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Table 6-1. Pressure dependence (dν/dP, cm-1·GPa-1) of selected IR modes of CaSDB 

from ambient to 11 GPa. 

IR Mode Frequency (cm-1) dν/dP (cm-1·GPa-1) 

ν(C-H) 

3217 

3104 

0.1 

4.6 

νas(OCO) 1613 2.3 

νs(OCO) 1408 2.1 

ν(OSO) 1294 0.9 

3 476 3.0 

ν(Ca-O) 

431 0.5 

303 5.3 

2 220 4.9 

 

Table 6-2. Pressure dependence (dν/dP, cm-1·GPa-1) of selected Raman modes of CaSDB 

from ambient to 11 GPa 

Raman Mode Frequency (cm-1) dν/dP (cm-1·GPa-1) 

ν(C-H) 3084 6.5 

νas(OCO) 1594 3.4 

νs(OCO) 1435 1.9 

ν(OSO) 1137 2.8 
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6.3.3 IR spectra of CaSDB loaded with CO2 at 0.39 GPa 

The above results showed the high stability of the activated CaSDB framework 

upon compression, which is crucial to its application for gas storage. In order to study the 

performance of CaSDB for CO2 storage under high pressures and explore the possible 

adsorption mechanism, the IR and Raman spectra of CaSDB loaded with CO2 were 

collected and compared with those of empty framework at similar pressures, as depicted in 

Figure 6-6. The optical image of the sample chamber that consists of CaSDB (the opaque 

parts) and solid CO2 (the transparent area) shown in Figure 6-6a demonstrates the 

successful loading of CO2, which can be further evidenced by the characteristic IR 

absorption band of CO2 at 2334 cm-1 (ν3) that is due to the asymmetric stretching vibration 

of O=C=O (Figure 6-6b).  Moreover, two sets of high-frequency IR bands can be observed 

at around 3600 and 3710 cm−1, that are assigned as the CO2 combination modes of ν3 + 2ν2 

and ν3 + ν1, respectively.26 The splitting of ν3 + ν1 mode of CO2 (Figure 6-6b inset) indicates 

the insertion of CO2 into the pores of CaSDB framework at 0.39 GPa as two different types 

of CO2 are present in the system. The one with the lower frequency (3690 cm-1) is due to 

the CO2 inside the CaSDB channels and the other with higher frequency (3712 cm-1) can 

be assigned as the CO2 outside the framework as the pressure medium.28  
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Figure 6-6. IR spectra of CaSDB and CO2 loaded CaSDB at around 0.4 GPa in the spectral 

region of (a) 100-525 cm-1; (b) 600-4000 cm-1. The inset shows (a) the optical image of the 

sample chamber of CaSDB loaded with CO2; (b) the CO2 combination modes in the 

enlarged spectral region of 3550-3800 cm-1. 
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The comparison between these two spectra also indicates the strong interactions 

between CO2 and the CaSDB framework. Firstly, the intensity and width of one of the ν(Ca-

O) mode at 308 cm-1 was greatly enhanced upon CO2 loading, whereas the intensity of the 

other mode at 432 cm-1 was much weakened. Typically, the band width of an IR mode 

indicates the ordering of the environment surrounding the mode. Thus the drastic change 

of the Ca-O band width is caused by the change of the local surroundings of Ca2+ due to 

the strong interaction between the oxygen of CO2 and the calcium metal center. Secondly, 

a new peak at 1687 cm-1 appeared in the spectrum of CO2 loaded CaSDB, which can be 

assigned to the C=C stretching mode of the benzene ring. The enhancement of the C=C 

mode, which is otherwise lacking in the IR spectrum of pure CaSDB, strongly suggests the 

guest-host interaction on the specific site of the benzene ring. All these significant changes 

of the IR modes of CaSDB upon CO2 loading demonstrate direct evidence of interactions 

between CO2 and the framework and the specific adsorption sites of the framework.  

 

6.3.4 IR and Raman spectra of CaSDB loaded with CO2 at high 
pressures  

To study the pressure effects on the performance of CaSDB framework for CO2 

storage, the IR and Raman spectra of the framework loaded with CO2 upon compression 

and decompression were measured, as shown in Figures 6-7 and 6-9. CO2 was found to be 

inserted into the channels of the framework in the entire pressure region from 0.24 GPa to 

13.69 GPa, as two sets of ν3 + ν1 mode of CO2 were observed (Figure 6-7c), which 

experienced gradual pressure-induced blue shift and broadening on increasing pressure. In 

the far-IR region (Figure 6-7a), one of the most striking changes of the IR mode in response 
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to pressure was the Ca-O stretch mode at ~ 300 cm-1, which experienced an obvious 

decrease of band width upon compression from 0.24 GPa to 1.03 GPa, indicating a gradual 

formation of Ca-O bond between the metal center and CO2. Upon further compression, the 

broad Ca-O stretch mode slowly evolved into two single peaks with a drop of intensity. 

The drastic change of the Ca-O modes suggests a pressure-enhanced interaction between 

the oxygen of CO2 and the Ca2+ of the CaSDB framework as more CO2 were forced into 

the framework. Other changes in the far-IR region include the enhancement of the intensity 

of the lattice mode at 165 cm-1 and broadening of the lattice mode at 228 cm-1 upon 

compression. A new IR peak (denoted as A) at 214 cm-1 appeared at 5.39 GPa and its 

intensity increased on compression.  The appearance of new peaks usually suggest a phase 

transition in the framework. Thus the CO2 loaded CaSDB might experience a phase 

transformation at around 5.39 GPa. The pure CaSDB framework was found to be very 

stable to compression, thus the phase transition is highly likely induced by strong CO2 

interactions with the framework. At the highest pressure of 13.6 GPa, the IR profile in the 

far-IR region can be characterized by an extremely broadened pattern, indicating the 

amorphization of CO2 loaded CaSDB framework. In the mid-IR range (Figure 6-7b), most 

of the IR modes were gradually broadened upon compression. It is worth noting that the 

C=C stretching mode showed an obvious red shift as pressure increases and disappeared 

above 4.74 GPa. The weakening of C=C mode is a result of the interaction between the 

molecular quadrupole of adsorbed CO2 molecules and the phenyl rings of the linker, 

consistent with Plonka et al.’s study.14 Upon decompression and complete recovery, all the 

modifications of the IR modes were found to be reversible, except for the CO2 modes such 

as ν3 + 2ν2 and ν3 + ν1 mode as all the CO2 molecules escape from the sample chamber.  
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The Raman peaks (denoted as 4-7) in the region 100-400 cm-1 are associated with 

the lattice modes of the CaSDB framework (Figure 6-9a). Upon compression to 1.44 GPa, 

three new peaks appeared at 85 and 105 cm-1 that can be assigned as the Eg, Fg- and Fg+ 

mode of solid CO2, respectively, indicating that the sample in the DAC consists of CaSDB 

and highly crystalline solid CO2 (phase I) outside the framework.37 Furthermore, additional 

Raman peak (deonted as B) appeared at 160 cm-1 at 1.44 GPa due to the enhanced CO2-

framework interaction. Upon further compression to 4.08 GPa, the intensity of the Eg, Fg- 

and Fg+ modes of crystalline CO2 along with the lattice modes B and 4 were much 

enhanced. From 5.39 GPa to 11.97 GPa (Figure 6-9b), the lattice mode 5 and 6 disappeared 

and the other lattice modes of CaSDB became broadened, indicating a decrease of 

crystallinity of the framework. At the highest pressure of 13.6 GPa, the entire Raman 

pattern was almost flattened, suggesting a transformation to an amorphous structure. Upon 

decompression, the changes of the Raman peaks are found to be reversible. When the 

pressure was released to 0.24 GPa, the spectrum resembles the initial one at the same 

pressure. Thus the CO2 loaded CaSDB framework maintained the original structure and 

crystallinity upon compression from 13.6 GPa.  
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Figure 6-7. IR spectra of CaSDB loaded with CO2 upon compression from 0.24 to 13.6 

GPa and recovery in the frequency region (a) 90-535 cm-1; (b) 1200-3300 cm-1 and (c) 

3550-3850 cm-1.  
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To further examine the boundary of the phase transition for the CO2 loaded CaSDB 

framework, the frequency of selected IR and Raman modes as a function of pressure from 

0.24 to 13.6 GPa were analyzed in Figures 6-8 (IR) and 6-9c (Raman); along with the 

pressure dependences listed in Tables 6-3 (IR) and 6-4 (Raman). In general, the change in 

the slope of pressure-dependence, disappearance of the initial peaks, and appearance of 

new peaks provide evidence for the start and finish of phase transitions of the structure. 

Thus, the approximate phase boundary for the CO2 loaded CaSDB framework is around 5 

GPa, as evidenced by the slope change for all the selected modes (Figures 6-8 and 6-9c) 

and the appearance of a new IR mode νA at such pressure (Figure 6-7a). Since the empty 

CaSDB framework shows high stability (no phase transition) under high pressure, hence 

the phase transition of the CO2 loaded framework results from the strong interactions with 

CO2. 
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Figure 6-8. Frequency of selected IR modes of CaSDB loaded with CO2 GPa in the 

frequency region of (a) 150-450 cm-1; (b) 1275-1700 cm-1 and (c) 3050-3800 cm-1 as a 

function of pressure from 0.24 to 13.6 GPa.  
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Table 6-3. Pressure dependence (dν/dP, cm-1·GPa-1) of selected IR modes of CaSDB 

loaded with CO2 from 0.24 to 13.6 GPa.  

 

IR mode Frequency (cm-1) 

dν/dP (cm-1∙ GPa-1) 

0.24 - 5 GPa 5 - 13.6 GPa 

ν(C-H) 3106 9.0 4.9 

ν(C=C) 1689 -4.2  

νas(OCO) 1612 6.3 2.4 

νs(OCO) 1407 4.4 2.9 

ν(OSO) 

1308 2.2 1.4 

1297 1.9 1.5 

ν(Ca-O) 

422 1.2 2.5 

311 1.8 5.1 

2 228 8.8 3.3 

A 214  10.0 

1 165 6.0 4.4 
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Figure 6-9. Raman spectra of CaSDB upon compression from (a) 0.24-4.08 GPa; (b) 5.39-

13.6 GPa and recovery in the frequency region of 75-450 cm-1 and (c) Frequency of 

selected Raman modes of CaSDB loaded with CO2 as a function of pressure from 0.24 to 

13.6 GPa.  
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Table 6-4. Pressure dependence (dν/dP, cm-1∙ GPa-1) of selected Raman modes of 

CaSDB loaded with CO2 from 0.24 to 13.6 GPa.  

 

Raman mode Frequency (cm-1) 

dν/dP (cm-1∙ GPa-1) 

0.24 - 5 GPa 5 - 13.6 GPa 

7 345 5.7 4.2 

6 277 4.8  

5 258 4.2  

4 181 15.0 8.5 

B 160 11.9 8.9 
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6.4 Discussion 

The above results showed the high stability of activated CaSDB framework under 

high pressure and an enhanced CO2 storage in CaSDB induced by pressure. Thus, in-depth 

understanding of the contributing factors to the framework stability as well as the guest-

host interaction mechanisms are of fundamental interest.  Firstly, the Far-IR and Raman 

measurements suggest that the activated CaSDB framework exhibit high crystallinity upon 

compression to 3.2 GPa evidenced by the well-resolved lattice modes. The crystalline 

stability is close to that of α-Mg3(HCOO)6 and significantly higher than those of other 

MOFs investigated under high pressure such as ZIF-8.  According to Mao’s work, the 

activated α-Mg3(HCOO)6 framework stays crystalline up to 4 GPa with an irreversible 

crystalline-to-crystalline phase transition at 2 GPa.36 In contrast, Chapman et al.21 

demonstrated that the ZIF-8 framework undergoes irreversible amporphization upon slight 

compression to 0.34 GPa. Based on previous studies, the crystalline stability of a MOF 

framework mainly depends on the porosity of the framework and the connectivity between 

the metal center and organic ligands. The BET surface area and pore volume of CaSDB 

are 224 m2/g and 0.65 cm3/g, respectively12, which are slightly higher than those of α-

Mg3(HCOO)6;
38 yet much smaller than those of ZIF-8.39 Thus the relatively low porosity 

of CaSDB makes the framework crystalline stable. Moreover, the metal center of CaSDB 

not only connects with carboxylic oxygens, but also bonds to one of the sulfonyl oxygens 

from the ligands due to the special geometry of the SDB ligand. Usually, the metal center 

of a MOF framework only bounds to one kind of functional group of the organic linker. 

The unique connection of the metal center to bi-functional groups of the organic linker 

further helps the stabilization of framework crystallinity to compression. Further 
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compression to higher pressures (>3.2 GPa) resulted in a gradual disordering of the 

framework, but the channels remains intact up to 11 GPa.  

The structural stability of MOFs is crucial to their sorption applications. The high 

stability of the framework probed by IR and Raman spectra suggests that CaSDB is a 

promising candidate for CO2 storage under high pressure loading conditions. Previous 

studies of CO2 adsorption in CaSDB only limited the pressure range to ambient pressure. 

Thus it is imperative to comprehend the CO2 adsorption mechanisms by CaSDB at elevated 

pressures. Based on the mid-IR results, the splitting of the CO2 combination mode ν3 + ν1 

occured at very low pressure (i.e. 0.24 GPa) and room temperature, under which CO2 was 

in liquid phase.37 Thus the fact that two distinctly different CO2 molecules present in the 

system under above conditions indicates the CO2 included in the pores had strong bonding 

with the framework and limited mobility, in strong contrast to the liquid CO2 outside the 

framework. This observation is comparable with that of MIL-68(In) which contains big-

size pores (11.6 Å) and preferential binding sites (OH units) for CO2. Thus the splitting of 

the CO2 combination mode ν3 + ν1 suggests that the CaSDB framework has a high affinity 

towards CO2 under mild pressure conditions as low as 0.24 GPa. Furthermore, our IR data 

of CO2 loaded CaSDB showed that the benzene ring of the organic linker is one of the 

major interaction sites for CO2, in accord to previous study at ambient pressure that 

described the nature of the interaction as the interplay between the delocalized π aromatic 

system of the phenyl rings and the molecular quadrupole of CO2.
14 The unique geometry 

of the SDB ligand results in a pocket where the adsorbed CO2 molecule is placed between 

two centroids of the aromatic rings, as illustrated in Figure 10a. More importantly, the 

drastic change of the Ca-O stretch mode (especially the increase of the band width) of 
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CaSDB upon initial CO2 loading (0.24 GPa) suggests a strong interaction between CO2 

and the calcium metal center, as shown in Figure10b. The observation of the metal-CO2 

interaction in CaSDB is novel under high pressure, in addition to the phenyl-CO2 

interaction at ambient pressure. Thus our results demonstrate much stronger CO2-

framework interactions induced by high pressure. In addition, based on the absorption 

intensity of the two components of the ν3 + ν1 mode, we estimated that up to ∼33.6 % of 

the loaded CO2 was inserted in the framework, close to the CO2 uptake in ZIF-8 at high 

pressures.26  

Being guest molecules, CO2 substantially in turn, influences the structural stability 

of CaSDB under high pressure. The CO2 loaded framework was found to undergo a 

crystalline-to-crystalline phase transition at around 5 GPa, whereas the empty framework 

maintained the same structure up to 11 GPa. The phase transition for the CO2 loaded 

CaSDB was probably induced by a reorientation of the benzene rings to increase the pore 

opening, allowing more CO2 to accommodate in the channels as pressure increases, as 

depicted in Figure 6-10b. As mentioned, the phenyl rings 1 & 2 or 3 & 4 of the SDB ligand 

are in such an optimized geometry that CO2 molecules can be contained in the middle of 

the “pocket” upon adsorption at ambient pressure. However, the two phenyl rings 1 & 4 or 

2 & 3 are in a twisted configuration and thus cannot provide an adsorption site for CO2 to 

interact with both rings (Figure 6-10a). Upon compression, the phenyl ring 3 (or 4) can be 

reoriented to form an additional “π pocket” with phenyl 2 (or 1), generating another CO2 

adsorption site (Figure 6-10b).  The flexibility of the benzene ring was reported before. 

Prior study of biphenyl showed a phase transition from a twisted to a planar conformation 

at 0.18 GPa due to the pressure-induced twist of the rings.40 Thus it is possible that the 
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strong CO2-framework interaction forced the reorientation of the benzene rings of SDB 

ligand, which can be described as two phenyl rings connected by sulfonyl group, despite 

the fact that the SDB ligand itself is quite resilient to compression. Besides, the guest 

adsorption-driven phase transition of other MOFs were investigated many times before, 

including the study on the specific CO2 adsorption-induced phase transformations of 

MOFs.41-46 For example, MIL-53 (Cr) experienced so-called “breathing” transitions 

between large pore and narrow pore phases during CO2 adsorption.47 In situ X-ray 

diffraction measurements on the CO2 loaded CaSDB at high pressures would be helpful to 

elucidate the exact interaction mechanism between CO2 and the framework, including the 

phase transition and specific adsorption sites. 
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Figure 6-10. CO2 adsorption in CaSDB at (a) ambient pressure; (b) high pressures (HP). 

The blue balls represent CO2 molecules inside the pores of CaSDB, with the oxygen atoms 

omitted. The dash lines symbolize the interactions between CO2 and the specific adsorption 

sites of the framework.  
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6.5 Conclusions  

In summary, the stability of activated CaSDB framework and its performance for 

CO2 storage under high pressures were investigated by in situ IR and Raman spectroscopic 

measurements. The activated CaSDB framework which underwent a reversible 

amorphization at 11 GPa exhibited high stability upon compression. We also demonstrated 

a remarkable affinity between CO2 and the framework evidenced by the splitting of the ν3 

+ ν1 mode of CO2 at very low pressure (0.24 GPa). Strong guest-host interactions are 

apparent from the IR features of the framework in the Ca-O, C=C stretching region, 

providing key information about the possible CO2 adsorption sites of CaSDB. In particular, 

the CO2-metal interaction is novel and intriguing. As guest molecules, CO2 substantially 

influenced the structure of CaSDB and triggered a reversible phase transition of the 

framework at 5 GPa, involving the reorientation of the phenyl rings to allow 

accommodation for more CO2 storage. Our results provide a fundamental understanding of 

CO2 adsorption mechanism in CaSDB, which is promising for the application of green-

house storage.  
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Chapter 7  

7 Summary and Future Work 

7.1 Summary 

In this thesis, high pressure in situ IR and Raman spectroscopy were used to 

examine the stability as well as the CO2 adsorption performance of a series of MOFs with 

different topology and structures. All the MOFs exhibited extraordinary stability at high 

pressures, retaining chemical connectivity and porosity for CO2 storage. Additional CO2 

adsorption sites have been observed in these MOFs under high pressure, suggesting 

enhanced guest-host interactions between CO2 and the frameworks. The porosity, 

flexibility of the framework and the existence of preferential CO2 adsorption sites play an 

important role in the performance of the frameworks for CO2 storage.  

 In Chapters 2 and 3, it was shown that the ZIF-8 framework sustained extreme 

compression up to 39 GPa without permanent breakdown; and experienced fully reversible 

structural modifications upon compression from 1.6 GPa. Upon CO2 loading, strong 

interactions between CO2 and the framework were apparent from the IR features of the 

framework in the C=C stretching region, providing key information about the possible 

adsorption site. As guest molecules, CO2 substantially enhanced the structural stability of 

the ZIF-8 framework.  

 In Chapter 4, the MIL-68 (In) framework exhibited high stability under 

compression up to 9 GPa, while the pressure-induced structural modifications were found 

to be completely reversible for the as-made framework but irreversible for the activated 

framework. The difference in the reversibility of framework is attributed to the solvent 
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DMF molecules contained in the channels. More interestingly, the normally inaccessible 

triangular pores became available for CO2 at elevated pressures (e.g., > 1.5 GPa). The 

unique adsorption behavior of CO2 in the framework was associated with the OH units that 

were the primary binding sites through hydrogen bonding. In addition, the pressure-

enhanced CO2 storage behavior and the guest-host interaction mechanism were explored 

with the aid of Monte Carlo molecular mechanics simulations.  

Chapter 5 described a distinctly different CO2 adsorption behavior in α-

Mg3(HCOO)6 versus those in ZIF-8 or MIL-68 (In). At high pressures, the CO2 molecules 

were highly confined inside the pores due to strong dipole-dipole interactions with the 

formate ligand of the framework. Moreover, the CO2 loaded α-Mg3(HCOO)6 framework 

underwent a reversible crystalline-to-amorphous phase transformation at around 4.5 GPa, 

as evidenced by the Raman measurements.  

Chapter 6 revealed a remarkable affinity between CO2 and the CaSDB framework, 

as multiple CO2 adsorption sites in the framework were observed under high pressure in 

addition to the single interaction site at ambient pressure. In particular, the far-IR 

measurements suggested a CO2-metal interaction in CaSDB induced by pressure. As guest 

molecules, CO2 substantially influenced the structure of CaSDB and triggered a reversible 

crystalline-to-crystalline phase transition of the framework at 5 GPa, involving the 

reorientation of the phenyl rings to allow accommodation for more CO2 molecules. 
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7.2 Suggestions for future work 

We now have a preliminary understanding of pressure effects on MOFs, their 

stabilities and CO2 storage performance. Further experiments should help answer some 

unsolved questions from this work.  

 (1) In situ high pressure XRD would be a complimentary method to probe possible 

phase transitions of MOFs under high pressure. If single-crystal MOFs could be obtained, 

the single crystal XRD can not only monitor the structural changes of the frameworks, but 

also pinpoint the exact CO2 adsorption sites in the frameworks at high pressures.  

(2) More computational simulations can be performed to investigate the CO2 

storage in α-Mg3(HCOO)6 and CaSDB at high pressures to compare with the experimental 

work. 

 (3) All the current work was done under room temperature, at which CO2 solidifies 

above 0.6 GPa. In the future, the MOFs loaded with CO2 can be heated to higher 

temperatures to facilitate the diffusion of CO2 at pressures higher than 0.6 GPa. As a result, 

even more CO2 could be forced into the frameworks by pressure. A special heating device 

would be needed for the in situ high temperature measurements.  
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